Spaces:
Sleeping
Sleeping
import streamlit as st | |
import transformers | |
import torch | |
from langchain.llms import HuggingFacePipeline | |
from langchain.document_loaders import WebBaseLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chains import ConversationalRetrievalChain | |
from transformers import StoppingCriteria, StoppingCriteriaList | |
# Load the Llama model and setup the conversation pipeline | |
model_id = 'meta-llama/Llama-2-7b-chat-hf' | |
# Add your authentication token here | |
hf_auth = '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' | |
# Load Llama model | |
model_config = transformers.AutoConfig.from_pretrained(model_id, use_auth_token=hf_auth) | |
model = transformers.AutoModelForCausalLM.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
config=model_config, | |
device_map='auto', | |
use_auth_token=hf_auth | |
) | |
# Initialize the Llama pipeline | |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, use_auth_token=hf_auth) | |
bnb_config = transformers.BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type='nf4', | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
stop_list = ['\nHuman:', '\n```\n'] | |
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list] | |
stop_token_ids = [torch.LongTensor(x).to('cuda') for x in stop_token_ids] | |
stopping_criteria = StoppingCriteriaList([transformers.StoppingCriteria(max_length=1024)]) | |
generate_text = transformers.pipeline( | |
model=model, | |
tokenizer=tokenizer, | |
return_full_text=True, | |
task='text-generation', | |
stopping_criteria=stopping_criteria, | |
temperature=0.1, | |
max_new_tokens=512, | |
repetition_penalty=1.1 | |
) | |
llm = HuggingFacePipeline(pipeline=generate_text) | |
# Load source documents | |
web_links = ["https://www.techtarget.com/whatis/definition/transistor", | |
"https://en.wikipedia.org/wiki/Transistor", | |
# Add more source links as needed | |
] | |
loader = WebBaseLoader(web_links) | |
documents = loader.load() | |
# Split source documents | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20) | |
all_splits = text_splitter.split_documents(documents) | |
# Create embeddings and vector store | |
model_name = "sentence-transformers/all-mpnet-base-v2" | |
model_kwargs = {"device": "cuda"} | |
embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs) | |
vectorstore = FAISS.from_documents(all_splits, embeddings) | |
# Create the conversation retrieval chain | |
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True) | |
# Streamlit app | |
def main(): | |
st.title("AI Chatbot") | |
user_question = st.text_input("Ask a question:") | |
sources = [ | |
"Source 1", | |
"Source 2", | |
"Source 3", | |
# Add more sources as needed | |
] | |
selected_source = st.selectbox("Select a source:", sources) | |
if st.button("Get Answer"): | |
chat_history = [] | |
query = user_question | |
result = chain({"question": query, "chat_history": chat_history}) | |
st.write("Answer:", result["answer"]) | |
chat_history.append((query, result["answer"])) | |
if "source_documents" in result: | |
st.write("Source Documents:") | |
for source_doc in result["source_documents"]: | |
st.write(source_doc) | |
if __name__ == "__main__": | |
main() | |