File size: 9,381 Bytes
b1c6042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""
Implementation of ESDNet for image demoireing
"""


import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.nn.parameter import Parameter

class my_model(nn.Module):
    def __init__(self,
                 en_feature_num,
                 en_inter_num,
                 de_feature_num,
                 de_inter_num,
                 sam_number=1,
                 ):
        super(my_model, self).__init__()
        self.encoder = Encoder(feature_num=en_feature_num, inter_num=en_inter_num, sam_number=sam_number)
        self.decoder = Decoder(en_num=en_feature_num, feature_num=de_feature_num, inter_num=de_inter_num,
                               sam_number=sam_number)

    def forward(self, x):
        y_1, y_2, y_3 = self.encoder(x)
        out_1, out_2, out_3 = self.decoder(y_1, y_2, y_3)

        return out_1, out_2, out_3

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                m.weight.data.normal_(0.0, 0.02)
                if m.bias is not None:
                    m.bias.data.normal_(0.0, 0.02)
            if isinstance(m, nn.ConvTranspose2d):
                m.weight.data.normal_(0.0, 0.02)


class Decoder(nn.Module):
    def __init__(self, en_num, feature_num, inter_num, sam_number):
        super(Decoder, self).__init__()
        self.preconv_3 = conv_relu(4 * en_num, feature_num, 3, padding=1)
        self.decoder_3 = Decoder_Level(feature_num, inter_num, sam_number)

        self.preconv_2 = conv_relu(2 * en_num + feature_num, feature_num, 3, padding=1)
        self.decoder_2 = Decoder_Level(feature_num, inter_num, sam_number)

        self.preconv_1 = conv_relu(en_num + feature_num, feature_num, 3, padding=1)
        self.decoder_1 = Decoder_Level(feature_num, inter_num, sam_number)

    def forward(self, y_1, y_2, y_3):
        x_3 = y_3
        x_3 = self.preconv_3(x_3)
        out_3, feat_3 = self.decoder_3(x_3)

        x_2 = torch.cat([y_2, feat_3], dim=1)
        x_2 = self.preconv_2(x_2)
        out_2, feat_2 = self.decoder_2(x_2)

        x_1 = torch.cat([y_1, feat_2], dim=1)
        x_1 = self.preconv_1(x_1)
        out_1 = self.decoder_1(x_1, feat=False)

        return out_1, out_2, out_3


class Encoder(nn.Module):
    def __init__(self, feature_num, inter_num, sam_number):
        super(Encoder, self).__init__()
        self.conv_first = nn.Sequential(
            nn.Conv2d(12, feature_num, kernel_size=5, stride=1, padding=2, bias=True),
            nn.ReLU(inplace=True)
        )
        self.encoder_1 = Encoder_Level(feature_num, inter_num, level=1, sam_number=sam_number)
        self.encoder_2 = Encoder_Level(2 * feature_num, inter_num, level=2, sam_number=sam_number)
        self.encoder_3 = Encoder_Level(4 * feature_num, inter_num, level=3, sam_number=sam_number)

    def forward(self, x):
        x = F.pixel_unshuffle(x, 2)
        x = self.conv_first(x)

        out_feature_1, down_feature_1 = self.encoder_1(x)
        out_feature_2, down_feature_2 = self.encoder_2(down_feature_1)
        out_feature_3 = self.encoder_3(down_feature_2)

        return out_feature_1, out_feature_2, out_feature_3


class Encoder_Level(nn.Module):
    def __init__(self, feature_num, inter_num, level, sam_number):
        super(Encoder_Level, self).__init__()
        self.rdb = RDB(in_channel=feature_num, d_list=(1, 2, 1), inter_num=inter_num)
        self.sam_blocks = nn.ModuleList()
        for _ in range(sam_number):
            sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num)
            self.sam_blocks.append(sam_block)

        if level < 3:
            self.down = nn.Sequential(
                nn.Conv2d(feature_num, 2 * feature_num, kernel_size=3, stride=2, padding=1, bias=True),
                nn.ReLU(inplace=True)
            )
        self.level = level

    def forward(self, x):
        out_feature = self.rdb(x)
        for sam_block in self.sam_blocks:
            out_feature = sam_block(out_feature)
        if self.level < 3:
            down_feature = self.down(out_feature)
            return out_feature, down_feature
        return out_feature


class Decoder_Level(nn.Module):
    def __init__(self, feature_num, inter_num, sam_number):
        super(Decoder_Level, self).__init__()
        self.rdb = RDB(feature_num, (1, 2, 1), inter_num)
        self.sam_blocks = nn.ModuleList()
        for _ in range(sam_number):
            sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num)
            self.sam_blocks.append(sam_block)
        self.conv = conv(in_channel=feature_num, out_channel=12, kernel_size=3, padding=1)

    def forward(self, x, feat=True):
        x = self.rdb(x)
        for sam_block in self.sam_blocks:
            x = sam_block(x)
        out = self.conv(x)
        out = F.pixel_shuffle(out, 2)

        if feat:
            feature = F.interpolate(x, scale_factor=2, mode='bilinear')
            return out, feature
        else:
            return out


class DB(nn.Module):
    def __init__(self, in_channel, d_list, inter_num):
        super(DB, self).__init__()
        self.d_list = d_list
        self.conv_layers = nn.ModuleList()
        c = in_channel
        for i in range(len(d_list)):
            dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i],
                                   padding=d_list[i])
            self.conv_layers.append(dense_conv)
            c = c + inter_num
        self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1)

    def forward(self, x):
        t = x
        for conv_layer in self.conv_layers:
            _t = conv_layer(t)
            t = torch.cat([_t, t], dim=1)
        t = self.conv_post(t)
        return t


class SAM(nn.Module):
    def __init__(self, in_channel, d_list, inter_num):
        super(SAM, self).__init__()
        self.basic_block = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
        self.basic_block_2 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
        self.basic_block_4 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
        self.fusion = CSAF(3 * in_channel)

    def forward(self, x):
        x_0 = x
        x_2 = F.interpolate(x, scale_factor=0.5, mode='bilinear')
        x_4 = F.interpolate(x, scale_factor=0.25, mode='bilinear')

        y_0 = self.basic_block(x_0)
        y_2 = self.basic_block_2(x_2)
        y_4 = self.basic_block_4(x_4)

        y_2 = F.interpolate(y_2, scale_factor=2, mode='bilinear')
        y_4 = F.interpolate(y_4, scale_factor=4, mode='bilinear')

        y = self.fusion(y_0, y_2, y_4)
        y = x + y

        return y


class CSAF(nn.Module):
    def __init__(self, in_chnls, ratio=4):
        super(CSAF, self).__init__()
        self.squeeze = nn.AdaptiveAvgPool2d((1, 1))
        self.compress1 = nn.Conv2d(in_chnls, in_chnls // ratio, 1, 1, 0)
        self.compress2 = nn.Conv2d(in_chnls // ratio, in_chnls // ratio, 1, 1, 0)
        self.excitation = nn.Conv2d(in_chnls // ratio, in_chnls, 1, 1, 0)

    def forward(self, x0, x2, x4):
        out0 = self.squeeze(x0)
        out2 = self.squeeze(x2)
        out4 = self.squeeze(x4)
        out = torch.cat([out0, out2, out4], dim=1)
        out = self.compress1(out)
        out = F.relu(out)
        out = self.compress2(out)
        out = F.relu(out)
        out = self.excitation(out)
        out = F.sigmoid(out)
        w0, w2, w4 = torch.chunk(out, 3, dim=1)
        x = x0 * w0 + x2 * w2 + x4 * w4

        return x


class RDB(nn.Module):
    def __init__(self, in_channel, d_list, inter_num):
        super(RDB, self).__init__()
        self.d_list = d_list
        self.conv_layers = nn.ModuleList()
        c = in_channel
        for i in range(len(d_list)):
            dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i],
                                   padding=d_list[i])
            self.conv_layers.append(dense_conv)
            c = c + inter_num
        self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1)

    def forward(self, x):
        t = x
        for conv_layer in self.conv_layers:
            _t = conv_layer(t)
            t = torch.cat([_t, t], dim=1)

        t = self.conv_post(t)
        return t + x


class conv(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1):
        super(conv, self).__init__()
        self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride,
                              padding=padding, bias=True, dilation=dilation_rate)

    def forward(self, x_input):
        out = self.conv(x_input)
        return out


class conv_relu(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1):
        super(conv_relu, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride,
                      padding=padding, bias=True, dilation=dilation_rate),
            nn.ReLU(inplace=True)
        )

    def forward(self, x_input):
        out = self.conv(x_input)
        return out