Awudu-Jamal1
commited on
Commit
•
fb3a589
1
Parent(s):
663a1bf
app added
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import pickle
|
4 |
+
|
5 |
+
xtrain= pd.read_csv('Xtrains.csv')
|
6 |
+
ytrain=pd.read_csv('Ytrains.csv')
|
7 |
+
|
8 |
+
# Loading Models
|
9 |
+
with open("model.pkl", "rb") as f:
|
10 |
+
clf = pickle.load(f)
|
11 |
+
|
12 |
+
clf.fit(xtrain, ytrain.values.ravel())
|
13 |
+
|
14 |
+
tenure_labels = {
|
15 |
+
0: "3-6 months",
|
16 |
+
1: "6-9 months",
|
17 |
+
2: "9-12 months",
|
18 |
+
3: "12-15 months",
|
19 |
+
4: "15-18 months",
|
20 |
+
5: "18-21 months",
|
21 |
+
6: "21-24 months",
|
22 |
+
7: "> 24 months"
|
23 |
+
}
|
24 |
+
|
25 |
+
# Reverse the mapping for predictions
|
26 |
+
tenure_values = {v: k for k, v in tenure_labels.items()}
|
27 |
+
|
28 |
+
def predict(tenure, montant, freq_rech, revenue, arpu, freq, data_vol, on_net, orange, tigo, freq_top_pack, regularity):
|
29 |
+
|
30 |
+
tenure_value = tenure_values[tenure]
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
input_df = pd.DataFrame({
|
35 |
+
'TENURE': [tenure_value],
|
36 |
+
'MONTANT': [montant],
|
37 |
+
'FREQUENCE_RECH': [freq_rech],
|
38 |
+
'REVENUE': [revenue],
|
39 |
+
'ARPU_SEGMENT': [arpu],
|
40 |
+
'FREQUENCE': [freq],
|
41 |
+
'DATA_VOLUME': [data_vol],
|
42 |
+
'ON_NET': [on_net],
|
43 |
+
'ORANGE': [orange],
|
44 |
+
'TIGO': [tigo],
|
45 |
+
'REGULARITY':[regularity],
|
46 |
+
'FREQ_TOP_PACK': [freq_top_pack]
|
47 |
+
})
|
48 |
+
|
49 |
+
prediction = clf.predict(input_df)
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
churn_label = "Customer will churn" if prediction == 1 else "Customer will not churn"
|
54 |
+
result = {
|
55 |
+
'text': churn_label, # Use the churn label as 'text'
|
56 |
+
'entities': [] # You can leave 'entities' as an empty list if no entities need highlighting
|
57 |
+
}
|
58 |
+
print(result)
|
59 |
+
return result
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
# Create a dropdown menu with labels
|
64 |
+
tenure_dropdown = gr.inputs.Dropdown(list(tenure_labels.values()), label="TENURE")
|
65 |
+
|
66 |
+
iface = gr.Interface(
|
67 |
+
fn=predict,
|
68 |
+
inputs=[
|
69 |
+
tenure_dropdown, # Dropdown instead of slider
|
70 |
+
#gr.inputs.Slider(minimum=1, maximum=7, label="TENURE"),
|
71 |
+
gr.inputs.Slider(minimum=20, maximum=470000, label="MONTANT"),
|
72 |
+
gr.inputs.Slider(minimum=1, maximum=131, label="FREQUENCE_RECH"),
|
73 |
+
gr.inputs.Slider(minimum=1, maximum=530000, label="REVENUE"),
|
74 |
+
gr.inputs.Slider(minimum=0, maximum=2453, label="ARPU_SEGMENT"),
|
75 |
+
gr.inputs.Slider(minimum=1, maximum=91, label="FREQUENCE"),
|
76 |
+
gr.inputs.Slider(minimum=1, maximum=1702309, label="DATA_VOLUME"),
|
77 |
+
gr.inputs.Slider(minimum=0, maximum=51000, label="ON_NET"),
|
78 |
+
gr.inputs.Slider(minimum=0, maximum=12040, label="ORANGE"),
|
79 |
+
gr.inputs.Slider(minimum=0, maximum=4174, label="TIGO"),
|
80 |
+
gr.inputs.Slider(minimum=0, maximum=624, label="FREQ_TOP_PACK"),
|
81 |
+
gr.inputs.Slider(minimum=0, maximum=62, label="REGULARITY")
|
82 |
+
],
|
83 |
+
|
84 |
+
outputs=output,
|
85 |
+
title="Team Paris Customer Churn Prediction App",
|
86 |
+
description="Let's Get Started With Some Predictions!"
|
87 |
+
)
|
88 |
+
|
89 |
+
iface.launch()
|