File size: 25,079 Bytes
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c0c67c
75309ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import json
from multiprocessing import Pool, cpu_count
# import requests
# from tenacity import RetryError
import re
import logging
import chainlit as cl
from termcolor import colored
from typing import Any, Dict, Union, List
from typing import TypedDict, Annotated
from langgraph.graph.message import add_messages
from agents.base_agent import BaseAgent
from utils.read_markdown import read_markdown_file
from tools.google_serper import serper_search, serper_shopping_search
from utils.logging import log_function, setup_logging
from tools.offline_graph_rag_tool import run_rag
from prompt_engineering.guided_json_lib import (
    guided_json_search_query, 
    guided_json_best_url_two, 
    guided_json_router_decision, 
    guided_json_parse_expert,
    guided_json_search_query_two
)


setup_logging(level=logging.DEBUG)
logger = logging.getLogger(__name__)

class MessageDict(TypedDict):
    role: str
    content: str

class State(TypedDict):
    meta_prompt: Annotated[List[dict], add_messages]
    conversation_history: Annotated[List[dict], add_messages]
    requirements_gathering: Annotated[List[str], add_messages]
    expert_plan: str
    expert_research: Annotated[List[str], add_messages]
    expert_research_shopping: Annotated[List[str], add_messages]
    expert_writing: str
    user_input: Annotated[List[str], add_messages]
    previous_search_queries: Annotated[List[dict], add_messages]
    router_decision: str
    chat_limit: int
    chat_finished: bool
    recursion_limit: int
    final_answer: str

state: State = {
    "meta_prompt": [],
    "conversation_history": [],
    "requirements_gathering": [],
    "expert_plan": [],
    "expert_research": [],
    "expert_research_shopping": [],
    "expert_writing": [],
    "user_input": [],
    "previous_search_queries": [],
    "router_decision": None,
    "chat_limit": None,
    "chat_finished": False,
    "recursion_limit": None,
    "final_answer": None
}

def chat_counter(state: State) -> State:
    chat_limit = state.get("chat_limit")
    if chat_limit is None:
        chat_limit = 0
    chat_limit += 1
    state["chat_limit"] = chat_limit
    return chat_limit

def routing_function(state: State) -> str:
        decision = state["router_decision"]
        print(colored(f"\n\n Routing function called. Decision: {decision}\n\n", 'green'))
        return decision

def set_chat_finished(state: State) -> bool:
    state["chat_finished"] = True
    final_response = state["meta_prompt"][-1].content
    print(colored(f"\n\n DEBUG FINAL RESPONSE: {final_response}\n\n", 'green'))   
    
    # Split the response at ">> FINAL ANSWER:"
    parts = final_response.split(">> FINAL ANSWER:")
    if len(parts) > 1:
        answer_part = parts[1].strip()
        
        # Remove any triple quotes
        final_response_formatted = answer_part.strip('"""')
        
        # Remove leading whitespace
        final_response_formatted = final_response_formatted.lstrip()
        
        # Remove the CoR dictionary at the end
        cor_pattern = r'\nCoR\s*=\s*\{[\s\S]*\}\s*$'
        final_response_formatted = re.sub(cor_pattern, '', final_response_formatted)
        
        # Remove any trailing whitespace
        final_response_formatted = final_response_formatted.rstrip()
        
        # print(colored(f"\n\n DEBUG: {final_response_formatted}\n\n", 'green'))
        print(colored(f"\n\n Jarvis👩‍💻: {final_response_formatted}", 'cyan'))
        state["final_answer"] = f'''{final_response_formatted}'''
    else:
        print(colored("Error: Could not find '>> FINAL ANSWER:' in the response", 'red'))
        state["final_answer"] = "Error: No final answer found"

    return state

class Jar3d(BaseAgent[State]):
    def __init__(self, model: str = None, server: str = None, temperature: float = 0, 
                 model_endpoint: str = None, stop: str = None):
        super().__init__(model, server, temperature, model_endpoint, stop)
        self.llm = self.get_llm(json_model=False)

    def get_prompt(self, state: State = None) -> str:
        system_prompt_md = read_markdown_file('prompt_engineering/jar3d_requirements_prompt.md')
        system_prompt = f"{system_prompt_md}\n <Type2> {state.get('final_answer', '')} </Type2>"
        return system_prompt
        
    def process_response(self, response: Any, user_input: str, state: State = None) -> Dict[str, List[Dict[str, str]]]:
        updates_conversation_history = {
            "requirements_gathering": [
                {"role": "user", "content": f"{user_input}"},
                {"role": "assistant", "content": str(response)}
            ]
        }
        return updates_conversation_history
    
    def get_conv_history(self, state: State) -> str:
        conversation_history = state.get('requirements_gathering', [])
        return "\n".join([f"{msg['role']}: {msg['content']}" for msg in conversation_history])
    
    def get_user_input(self) -> str:
        pass

    def get_guided_json(self, state: State) -> Dict[str, Any]:
        pass

    def use_tool(self) -> Any:
        pass

    def run_chainlit(self, state: State, message: cl.Message) -> State:
        user_message = message.content
        # system_prompt = self.get_prompt()
        user_input = f"cogor:{user_message}"

        # user_input = f"{system_prompt}\n cogor {user_message}"
    
        state = self.invoke(state=state, user_input=user_input)
        response = state['requirements_gathering'][-1]["content"]
        response = re.sub(r'^```python[\s\S]*?```\s*', '', response, flags=re.MULTILINE)
        response = response.lstrip()

        return state, response


class MetaExpert(BaseAgent[State]):
    def __init__(self, model: str = None, server: str = None, temperature: float = 0, 
                 model_endpoint: str = None, stop: str = None):
        super().__init__(model, server, temperature, model_endpoint, stop)
        self.llm = self.get_llm(json_model=False)

    def get_prompt(self, state:None) -> str:
        system_prompt = read_markdown_file('prompt_engineering/jar3d_meta_prompt.md')
        return system_prompt
        
    def process_response(self, response: Any, user_input: str, state: State = None) -> Dict[str, List[MessageDict]]:
        user_input = None
        updates_conversation_history = {
            "meta_prompt": [
                {"role": "user", "content": f"{user_input}"},
                {"role": "assistant", "content": str(response)}

            ]
        }
        return updates_conversation_history
    
    # @log_function(logger)
    def get_conv_history(self, state: State) -> str:

        all_expert_research = []

        if state["expert_research"]:
            expert_research = state["expert_research"]
            all_expert_research.extend(expert_research)
        else:
            all_expert_research = []

        expert_message_history = f"""
        <expert_plan>
        ## Your Expert Plan:\n{state.get("expert_plan", [])}\n
        </expert_plan>

        <expert_writing>
        ## Your Expert Writing:\n{state.get("expert_writing", [])}\n
        </expert_writing>

        <internet_research_shopping_list> 
        ## Your Expert Shopping List:\n{state.get("expert_research_shopping", [])}\n
        </internet_research_shopping_list>

        <internet_research>
        ## Your Expert Research:{all_expert_research}\n
        </internet_research>
        """

        return expert_message_history
    
    def get_user_input(self) -> str:
        user_input = input("Enter your query: ")
        return user_input
    
    def get_guided_json(self, state: State) -> Dict[str, Any]:
        pass

    def use_tool(self) -> Any:
        pass

    @log_function(logger)
    def run(self, state: State) -> State:

        counter = chat_counter(state)  # Counts every time we invoke the Meta Agent
        recursion_limit = state.get("recursion_limit")
        recursions = 3*counter - 2
        print(colored(f"\n\n * We have envoked the Meta-Agent {counter} times.\n * we have run {recursions} max total iterations: {recursion_limit}\n\n", "green"))
        
        upper_limit_recursions = recursion_limit
        lower_limit_recursions = recursion_limit - 2

        if recursions >= lower_limit_recursions and recursions <= upper_limit_recursions:
            final_answer = "**You are being explicitly told to produce your [Type 2] work now!**"
        elif recursions > upper_limit_recursions:
            extra_recursions = recursions - upper_limit_recursions
            base_message = "**You are being explicitly told to produce your [Type 2] work now!**"
            final_answer = (base_message + "\n") * (extra_recursions + 1)
        else:
            final_answer = None

        try:
            requirements = state['requirements_gathering'][-1]["content"]
        except: 
            requirements = state['requirements_gathering'][-1].content

        formatted_requirements = '\n\n'.join(re.findall(r'```python\s*([\s\S]*?)\s*```', requirements, re.MULTILINE))

        print(colored(f"\n\n User Requirements: {formatted_requirements}\n\n", 'green'))

        if state.get("meta_prompt"):
            try:
                meta_prompt = state['meta_prompt'][-1]["content"]
            except:
                meta_prompt = state['meta_prompt'][-1].content
            
            # print(colored(f"\n\n DEBUG Meta-Prompt: {meta_prompt}\n\n", 'yellow'))

            cor_match = '\n\n'.join(re.findall(r'```python\s*([\s\S]*?)\s*```', meta_prompt, re.MULTILINE))

            # print(colored(f"\n\n DEBUG CoR Match: {cor_match}\n\n", 'yellow'))
            user_input = f"<requirements>{formatted_requirements}</requirements> \n\n Here is your last CoR {cor_match} update your next CoR from here."
        else:
            user_input = formatted_requirements

        state = self.invoke(state=state, user_input=user_input, final_answer=final_answer)

        meta_prompt_cor = state['meta_prompt'][-1]["content"]

        print(colored(f"\n\n Meta-Prompt Chain of Reasoning: {meta_prompt_cor}\n\n", 'green'))
        
        return state
    

class NoToolExpert(BaseAgent[State]):
    def __init__(self, model: str = None, server: str = None, temperature: float = 0, 
                 model_endpoint: str = None, stop: str = None):
        super().__init__(model, server, temperature, model_endpoint, stop)
        self.llm = self.get_llm(json_model=False)

    def get_prompt(self, state) -> str:
        # print(f"\nn{state}\n")
        system_prompt = state["meta_prompt"][-1].content
        return system_prompt
        
    def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, Union[str, dict]]:

        # meta_prompts = state.get("meta_prompt", [])
        associated_meta_prompt = state["meta_prompt"][-1].content
        parse_expert = self.get_llm(json_model=True)

        parse_expert_prompt = """
        You must parse the expert from the text. The expert will be one of the following.
        1. Expert Planner
        2. Expert Writer
        Return your response as the following JSON
        {{"expert": "Expert Planner" or "Expert Writer"}}
        """

        input = [
                {"role": "user", "content": associated_meta_prompt},
                {"role": "assistant", "content": f"system_prompt:{parse_expert_prompt}"}

            ]


        retries = 0
        associated_expert = None

        while retries < 4 and associated_expert is None:
            retries += 1    
            if self.server == 'vllm':
                guided_json = guided_json_parse_expert
                parse_expert_response = parse_expert.invoke(input, guided_json)
            else:
                parse_expert_response = parse_expert.invoke(input)

            associated_expert_json = json.loads(parse_expert_response)
            associated_expert = associated_expert_json.get("expert")

        # associated_expert = parse_expert_text(associated_meta_prompt)
        print(colored(f"\n\n Expert: {associated_expert}\n\n", 'green'))

        if associated_expert == "Expert Planner":
            expert_update_key = "expert_plan"
        if associated_expert == "Expert Writer":
            expert_update_key = "expert_writing"
            

        updates_conversation_history = {
            "conversation_history": [
                {"role": "user", "content": user_input},
                {"role": "assistant", "content": f"{str(response)}"}

            ],
            expert_update_key: {"role": "assistant", "content": f"{str(response)}"}

        }


        return updates_conversation_history
    
    def get_conv_history(self, state: State) -> str:
        pass
    
    def get_user_input(self) -> str:
        pass
    
    def get_guided_json(self, state: State) -> Dict[str, Any]:
        pass

    def use_tool(self) -> Any:
        pass


    # @log_function(logger)
    def run(self, state: State) -> State:
        # chat_counter(state)
        all_expert_research = []
        meta_prompt = state["meta_prompt"][1].content

        if state.get("expert_research"):
            expert_research = state["expert_research"]
            all_expert_research.extend(expert_research)
            research_prompt = f"\n Your response must be delivered considering following research.\n ## Research\n {all_expert_research} "
            user_input = f"{meta_prompt}\n{research_prompt}"

        else:
            user_input = meta_prompt

        state = self.invoke(state=state, user_input=user_input)        
        return state
    

class ToolExpert(BaseAgent[State]):
    def __init__(self, model: str = None, server: str = None, temperature: float = 0, 
                 model_endpoint: str = None, stop: str = None, location: str = None):
        super().__init__(model, server, temperature, model_endpoint, stop, location)

        print(f"\n\n DEBUG LOCATION: {self.location}")

        self.llm = self.get_llm(json_model=False)

    def get_prompt(self, state) -> str:
        system_prompt = state["meta_prompt"][-1].content
        return system_prompt
        
    def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, Union[str, dict]]:
        updates_conversation_history = {
            "conversation_history": [
                {"role": "user", "content": user_input},
                {"role": "assistant", "content": f"{str(response)}"}
            ],
            "expert_research": {"role": "assistant", "content": f"{str(response)}"}
        }
        return updates_conversation_history
    
    def get_conv_history(self, state: State) -> str:
        pass
    
    def get_user_input(self) -> str:
        pass
    
    def get_guided_json(self, state: State) -> Dict[str, Any]:
        pass

    def use_tool(self, mode: str, engine: str, tool_input: str, query: str = None) -> Any:
        if mode == "serper":
            if engine == "search":
                results = serper_search(tool_input, self.location)
                return {"results": results, "is_shopping": False}
            elif engine == "shopping":
                results = serper_shopping_search(tool_input, self.location)
                return {"results": results, "is_shopping": True}
        elif mode == "rag":
            results = run_rag(urls=tool_input, query=query)
            return {"results": results, "is_shopping": False}

    def generate_search_queries(self, meta_prompt: str, num_queries: int = 5) -> List[str]:
        refine_query_template = """
        # Objective
        Your mission is to systematically address your manager's instructions by determining 
        the most appropriate search queries to use **AND** to determine the best engine to use for each query.
        Your engine choice is either search, or shopping. You must return either the search or shopping engine for each query.
        You will generate {num_queries} different search queries.

        # Manager's Instructions
        {manager_instructions}

        # Flexible Search Algorithm for Simple and Complex Questions

            1. Initial search:
            - For a simple question: "[Question keywords]"
            - For a complex topic: "[Main topic] overview"

            2. For each subsequent search:
            - Choose one of these strategies:

            a. Specify:
                Add a more specific term or aspect related to the topic.

            b. Broaden:
                Remove a specific term or add "general" or "overview" to the query.

            c. Pivot:
                Choose a different but related term from the topic.

            d. Compare:
                Add "vs" or "compared to" along with a related term.

            e. Question:
                Rephrase the query as a question by adding "what", "how", "why", etc.

        # Response Format

         **Return the following JSON:**
        {{
            "search_queries": [
                {{"engine": "search", "query": "Query 1"}},
                {{"engine": "shopping", "query": "Query 2"}},
                ...
                {{"engine": "search", "query": "Query {num_queries}"}}
            ]
        }}

        Remember:
        - Generate {num_queries} unique and diverse search queries.
        - Each query should explore a different aspect or approach to the topic.
        - Ensure the queries cover various aspects of the manager's instructions.
        - The "engine" field should be either "search" or "shopping" for each query.
        """

        refine_query = self.get_llm(json_model=True)
        refine_prompt = refine_query_template.format(manager_instructions=meta_prompt, num_queries=num_queries)
        input = [
            {"role": "user", "content": "Generate search queries"},
            {"role": "assistant", "content": f"system_prompt:{refine_prompt}"}
        ]
        
        guided_json = guided_json_search_query_two

        if self.server == 'vllm':
            refined_queries = refine_query.invoke(input, guided_json)
        else:
            refined_queries = refine_query.invoke(input)

        refined_queries_json = json.loads(refined_queries)
        return refined_queries_json.get("search_queries", [])

    def process_serper_result(self, query, serper_response ):
        best_url_template = """
            Given the serper results, and the search query, select the best URL

            # Search Query
            {search_query}

            # Serper Results
            {serper_results}

            **Return the following JSON:**

            {{"best_url": The URL of the serper results that aligns most with the search query.}}
        """

        best_url = self.get_llm(json_model=True)
        best_url_prompt = best_url_template.format(search_query=query["query"], serper_results=serper_response)
        input = [
            {"role": "user", "content": serper_response},
            {"role": "assistant", "content": f"system_prompt:{best_url_prompt}"}
        ]
        
        guided_json = guided_json_best_url_two

        if self.server == 'vllm':
            best_url = best_url.invoke(input, guided_json)
        else:
            best_url = best_url.invoke(input)

        best_url_json = json.loads(best_url)

        return {"query": query, "url": best_url_json.get("best_url")}
        # return best_url_json.get("best_url")

    def run(self, state: State) -> State:
        meta_prompt = state["meta_prompt"][-1].content
        print(colored(f"\n\n Meta-Prompt: {meta_prompt}\n\n", 'green'))

        # Generate multiple search queries
        search_queries = self.generate_search_queries(meta_prompt, num_queries=5)
        print(colored(f"\n\n Generated Search Queries: {search_queries}\n\n", 'green'))

        try:
            # Use multiprocessing to call Serper tool for each query in parallel
            with Pool(processes=min(cpu_count(), len(search_queries))) as pool:
                serper_results = pool.starmap(
                    self.use_tool, 
                    [("serper", query["engine"], query["query"], None) for query in search_queries]
                )

            # Collect shopping results separately
            shopping_results = [result["results"] for result in serper_results if result["is_shopping"]]

            if shopping_results:
                state["expert_research_shopping"] = shopping_results

            # Process Serper results to get best URLs
            with Pool(processes=min(cpu_count(), len(serper_results))) as pool:
                best_urls = pool.starmap(
                    self.process_serper_result,
                    [(query, result["results"]) for query, result in zip(search_queries, serper_results)] 
                    # zip(search_queries, serper_results)
                )
        except Exception as e:
            print(colored(f"Error in multithreaded processing: {str(e)}. Falling back to non-multithreaded approach.", "yellow"))
            # Fallback to non-multithreaded approach
            serper_results = [self.use_tool("serper", query["engine"], query["query"], None) for query in search_queries]
            shopping_results = [result["results"] for result in serper_results if result["is_shopping"]]
            if shopping_results:
                state["expert_research_shopping"] = shopping_results
            best_urls = [self.process_serper_result(query, result) for query, result in zip(search_queries, serper_results)]

        # Remove duplicates from the list of URLs
        unique_urls = list(dict.fromkeys(result["url"] for result in best_urls if result["url"] and result["query"]["engine"] == "search"))
        # unique_urls = list(dict.fromkeys(url for url in best_urls if url))

        print(colored("\n\n Sourced data from {} sources:".format(len(unique_urls)), 'green'))
        for i, url in enumerate(unique_urls, 1):
            print(colored("  {}. {}".format(i, url), 'green'))
        print()

        try:
            scraper_response = self.use_tool("rag", engine=None, tool_input=unique_urls, query=meta_prompt)
        except Exception as e:
            scraper_response = {"results": f"Error {e}: Failed to scrape results", "is_shopping": False}

        updates = self.process_response(scraper_response, user_input="Research")

        for key, value in updates.items():
            state = self.update_state(key, value, state)
                
        return state
    
class Router(BaseAgent[State]):
    def __init__(self, model: str = None, server: str = None, temperature: float = 0, 
                 model_endpoint: str = None, stop: str = None):
        super().__init__(model, server, temperature, model_endpoint, stop)
        self.llm = self.get_llm(json_model=True)


    def get_prompt(self, state) -> str:
        system_prompt = state["meta_prompt"][-1].content
        return system_prompt
        
    def process_response(self, response: Any, user_input: str = None, state: State = None) -> Dict[str, Union[str, dict]]:

        updates_conversation_history = {
            "router_decision": [
                {"role": "user", "content": user_input},
                {"role": "assistant", "content": f"{str(response)}"}

            ]
        }

        return updates_conversation_history
    
    def get_conv_history(self, state: State) -> str:
        pass
    
    def get_user_input(self) -> str:
        pass
    
    def get_guided_json(self, state: State) -> Dict[str, Any]:
        pass

    def use_tool(self, tool_input: str, mode: str) -> Any:
        pass

    # @log_function(logger)
    def run(self, state: State) -> State:

        router_template = """
            Given these instructions from your manager.

            # Response from Manager
            {manager_response}

            **Return the following JSON:**

            {{""router_decision: Return the next agent to pass control to.}}

            **strictly** adhere to these **guidelines** for routing.
            If your maneger's response contains "Expert Internet Researcher", return "tool_expert".
            If your manager's response contains "Expert Planner" or "Expert Writer", return "no_tool_expert".
            If your manager's response contains '>> FINAL ANSWER:', return "end_chat".

        """
        system_prompt = router_template.format(manager_response=state["meta_prompt"][-1].content)
        input = [
                {"role": "user", "content": ""},
                {"role": "assistant", "content": f"system_prompt:{system_prompt}"}

            ]
        router = self.get_llm(json_model=True)

        if self.server == 'vllm':
            guided_json = guided_json_router_decision
            router_response = router.invoke(input, guided_json)
        else:
            router_response = router.invoke(input)

        router_response = json.loads(router_response)
        router_response = router_response.get("router_decision")

        state = self.update_state("router_decision", router_response, state)
   
        return state