Spaces:
Sleeping
Sleeping
File size: 5,893 Bytes
d9e83ee 2964625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
title: Cinemo
app_file: demo.py
sdk: gradio
sdk_version: 4.37.2
tags:
- Image-2-Video
- LLM
- Large Language Model
short_description: Multimodal Image-to-Video
emoji: 🎥
colorFrom: green
colorTo: indigo
---
## Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models<br><sub>Official PyTorch Implementation</sub>
[![Arxiv](https://img.shields.io/badge/Arxiv-b31b1b.svg)](https://arxiv.org/abs/2407.15642)
[![Project Page](https://img.shields.io/badge/Project-Website-blue)](https://maxin-cn.github.io/cinemo_project/)
This repo contains pre-trained weights, and sampling code for our paper exploring image animation with motion diffusion models (Cinemo). You can find more visualizations on our [project page](https://maxin-cn.github.io/cinemo_project/).
In this project, we propose a novel method called Cinemo, which can perform motion-controllable image animation with strong consistency and smoothness. To improve motion smoothness, Cinemo learns the distribution of motion residuals, rather than directly generating subsequent frames. Additionally, a structural similarity index-based method is proposed to control the motion intensity. Furthermore, we propose a noise refinement technique based on discrete cosine transformation to ensure temporal consistency. These three methods help Cinemo generate highly consistent, smooth, and motion-controlled image animation results. Compared to previous methods, Cinemo offers simpler and more precise user control and better generative performance.
<div align="center">
<img src="visuals/pipeline.svg">
</div>
## News
- (🔥 New) Jul. 23, 2024. 💥 Our paper is released on [arxiv](https://arxiv.org/abs/2407.15642).
- (🔥 New) Jun. 2, 2024. 💥 The inference code is released. The checkpoint can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main).
## Setup
First, download and set up the repo:
```bash
git clone https://github.com/maxin-cn/Cinemo
cd Cinemo
```
We provide an [`environment.yml`](environment.yml) file that can be used to create a Conda environment. If you only want
to run pre-trained models locally on CPU, you can remove the `cudatoolkit` and `pytorch-cuda` requirements from the file.
```bash
conda env create -f environment.yml
conda activate cinemo
```
## Animation
You can sample from our **pre-trained Cinemo models** with [`animation.py`](pipelines/animation.py). Weights for our pre-trained Cinemo model can be found [here](https://huggingface.co/maxin-cn/Cinemo/tree/main). The script has various arguments for adjusting sampling steps, changing the classifier-free guidance scale, etc:
```bash
bash pipelines/animation.sh
```
All related checkpoints will download automatically and then you will get the following results,
<table style="width:100%; text-align:center;">
<tr>
<td align="center">Input image</td>
<td align="center">Output video</td>
<td align="center">Input image</td>
<td align="center">Output video</td>
</tr>
<tr>
<td align="center"><img src="visuals/animations/people_walking/0.jpg" width="100%"></td>
<td align="center"><img src="visuals/animations/people_walking/people_walking.gif" width="100%"></td>
<td align="center"><img src="visuals/animations/sea_swell/0.jpg" width="100%"></td>
<td align="center"><img src="visuals/animations/sea_swell/sea_swell.gif" width="100%"></td>
</tr>
<tr>
<td align="center" colspan="2">"People Walking"</td>
<td align="center" colspan="2">"Sea Swell"</td>
</tr>
<tr>
<td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/0.jpg" width="100%"></td>
<td align="center"><img src="visuals/animations/girl_dancing_under_the_stars/girl_dancing_under_the_stars.gif" width="100%"></td>
<td align="center"><img src="visuals/animations/dragon_glowing_eyes/0.jpg" width="100%"></td>
<td align="center"><img src="visuals/animations/dragon_glowing_eyes/dragon_glowing_eyes.gif" width="100%"></td>
</tr>
<tr>
<td align="center" colspan="2">"Girl Dancing under the Stars"</td>
<td align="center" colspan="2">"Dragon Glowing Eyes"</td>
</tr>
</table>
## Other Applications
You can also utilize Cinemo for other applications, such as motion transfer and video editing:
```bash
bash pipelines/video_editing.sh
```
All related checkpoints will download automatically and you will get the following results,
<table style="width:100%; text-align:center;">
<tr>
<td align="center">Input video</td>
<td align="center">First frame</td>
<td align="center">Edited first frame</td>
<td align="center">Output video</td>
</tr>
<tr>
<td align="center"><img src="visuals/video_editing/origin/a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td>
<td align="center"><img src="visuals/video_editing/origin/0.jpg" width="100%"></td>
<td align="center"><img src="visuals/video_editing/edit/0.jpg" width="100%"></td>
<td align="center"><img src="visuals/video_editing/edit/editing_a_corgi_walking_in_the_park_at_sunrise_oil_painting_style.gif" width="100%"></td>
</tr>
</table>
## Citation
If you find this work useful for your research, please consider citing it.
```bibtex
@article{ma2024cinemo,
title={Cinemo: Latent Diffusion Transformer for Video Generation},
author={Ma, Xin and Wang, Yaohui and Jia, Gengyun and Chen, Xinyuan and Li, Yuan-Fang and Chen, Cunjian and Qiao, Yu},
journal={arXiv preprint arXiv:2407.15642},
year={2024}
}
```
## Acknowledgments
Cinemo has been greatly inspired by the following amazing works and teams: [LaVie](https://github.com/Vchitect/LaVie) and [SEINE](https://github.com/Vchitect/SEINE), we thank all the contributors for open-sourcing.
## License
The code and model weights are licensed under [LICENSE](LICENSE). |