Spaces:
Sleeping
Sleeping
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import os | |
import numpy as np | |
import PIL | |
import torch | |
from packaging import version | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
from diffusers.configuration_utils import FrozenDict | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.schedulers import LCMScheduler | |
from diffusers.utils import PIL_INTERPOLATION, deprecate, logging | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
logger = logging.get_logger(__name__) | |
class ZePoPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin): | |
model_cpu_offload_seq = "text_encoder->unet->vae" | |
_optional_components = ["safety_checker", "feature_extractor"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: LCMScheduler, | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPImageProcessor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
deprecation_message = ( | |
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
" file" | |
) | |
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(scheduler.config) | |
new_config["steps_offset"] = 1 | |
scheduler._internal_dict = FrozenDict(new_config) | |
if safety_checker is None and requires_safety_checker: | |
logger.warning( | |
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
" results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
) | |
if safety_checker is not None and feature_extractor is None: | |
raise ValueError( | |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
) | |
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( | |
version.parse(unet.config._diffusers_version).base_version | |
) < version.parse("0.9.0.dev0") | |
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 | |
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: | |
deprecation_message = ( | |
"The configuration file of the unet has set the default `sample_size` to smaller than" | |
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" | |
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" | |
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" | |
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" | |
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" | |
" in the config might lead to incorrect results in future versions. If you have downloaded this" | |
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" | |
" the `unet/config.json` file" | |
) | |
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) | |
new_config = dict(unet.config) | |
new_config["sample_size"] = 64 | |
unet._internal_dict = FrozenDict(new_config) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.check_inputs | |
def check_inputs( | |
self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None | |
): | |
if strength < 0 or strength > 1: | |
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
def prepare_extra_step_kwargs(self, generator, eta): | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
def decode_latents(self, latents): | |
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min( int(num_inference_steps * strength), num_inference_steps) | |
init_timestep = max(init_timestep, 1) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
return timesteps, num_inference_steps - t_start | |
def prepare_latents(self, image, timestep, device,dtype, denoise_model, generator=None): | |
image = image.to(device=device,dtype=dtype) | |
batch_size = image.shape[0] | |
if image.shape[1] == 4: | |
init_latents = image | |
else: | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if isinstance(generator, list): | |
init_latents = [ | |
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
] | |
init_latents = torch.cat(init_latents, dim=0) | |
else: | |
init_latents = self.vae.encode(image).latent_dist.sample(generator) | |
init_latents = self.vae.config.scaling_factor * init_latents | |
# add noise to latents using the timestep | |
shape = init_latents.shape | |
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
# get latents | |
clean_latents = init_latents | |
if denoise_model: | |
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
latents = init_latents | |
else: | |
latents = noise | |
return latents, clean_latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
negative_prompt: Union[str, List[str]]=None, | |
image: PipelineImageInput = None, | |
style: PipelineImageInput = None, | |
strength: float = 0.5, | |
num_inference_steps: Optional[int] = 50, | |
original_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
eta: Optional[float] = 1.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
denoise_model: Optional[bool] = True, | |
fix_step_index = 0, | |
target_start_step = -1, | |
save_intermediate = False, | |
de_bug=False, | |
): | |
# 1. Check inputs | |
self.check_inputs(prompt, strength, callback_steps) | |
num_inference_steps = int(num_inference_steps * (1/strength)) | |
print(f'num_inference_steps {num_inference_steps} is multiple by {int(1/strength)}.') | |
# 2. Define call parameters | |
batch_size = len(prompt) | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# text embeddings | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=77, | |
return_tensors="pt" | |
) | |
dtype=self.unet.dtype | |
prompt_embeds = self.text_encoder(text_input.input_ids.to(device))[0] | |
prompt_embeds=prompt_embeds.to(dtype=dtype, device=device) | |
#print("input text embeddings :", prompt_embeds.shape) | |
if guidance_scale > 1.: | |
max_length = text_input.input_ids.shape[-1] | |
if negative_prompt: | |
uc_text = negative_prompt | |
else: | |
uc_text = "" | |
# uc_text = "ugly, tiling, poorly drawn hands, poorly drawn feet, body out of frame, cut off, low contrast, underexposed, distorted face" | |
unconditional_input = self.tokenizer( | |
[uc_text] * batch_size, | |
padding="max_length", | |
max_length=77, | |
return_tensors="pt" | |
) | |
# unconditional_input.input_ids = unconditional_input.input_ids[:, 1:] | |
unconditional_embeddings = self.text_encoder(unconditional_input.input_ids.to(device))[0] | |
unconditional_embeddings=unconditional_embeddings.to(dtype=dtype, device=device) | |
prompt_embeds = torch.cat([unconditional_embeddings, prompt_embeds], dim=0) | |
#print("prompt embeds shape: ", prompt_embeds.shape) | |
# 4. Preprocess image | |
image = self.image_processor.preprocess(image) | |
style = self.image_processor.preprocess(style) | |
# 5. Prepare timesteps | |
if isinstance(self.scheduler, LCMScheduler): | |
self.scheduler.set_timesteps( | |
num_inference_steps=num_inference_steps, | |
device=device, | |
original_inference_steps=original_inference_steps) | |
else: | |
self.scheduler.set_timesteps( | |
num_inference_steps=num_inference_steps, | |
device=device,) | |
print(f"num_inference_steps is {self.scheduler.timesteps}") | |
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
#print(f"All timesteps is : {timesteps}") | |
latent_timestep = torch.tensor([fix_step_index], device=device) | |
assert timesteps != [] | |
print("The time-steps are: ", timesteps) | |
# 6. Prepare latent variables | |
src_latents, src_clean_latents = self.prepare_latents( | |
image, latent_timestep, device,dtype, denoise_model, generator | |
) | |
sty_latents, sty_clean_latents = self.prepare_latents( | |
style, latent_timestep, device,dtype, denoise_model, generator | |
) | |
mutual_latents, _ = self.prepare_latents( | |
image, timesteps[:1], device, dtype, denoise_model, generator | |
) | |
# mutual_latents = src_latents | |
#latents = torch.cat([sty_t_latents, src_t_latents], dim=0) | |
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
generator = extra_step_kwargs.pop("generator", None) | |
# 8. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if de_bug: | |
import pdb; pdb.set_trace() | |
model_input = torch.cat( | |
[ | |
sty_latents, | |
src_latents, | |
mutual_latents | |
], | |
dim=0, | |
) | |
# predict the noise residual | |
if do_classifier_free_guidance: | |
concat_latent_model_input = torch.cat([model_input] * 2) | |
concat_prompt_embeds = prompt_embeds | |
#raise NotImplementedError("Classifier free guidance is not yet supported") | |
else: | |
concat_latent_model_input = model_input | |
concat_prompt_embeds = prompt_embeds | |
assert len(concat_prompt_embeds) == len(concat_latent_model_input) | |
timestep = torch.cat([latent_timestep] * (batch_size-1)+[t[None]], dim=0) | |
if do_classifier_free_guidance: | |
timestep = torch.cat([timestep] * 2) | |
concat_noise_pred = self.unet( | |
concat_latent_model_input, | |
timestep, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_hidden_states=concat_prompt_embeds, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
( | |
noise_pred, | |
noise_pred_uncond, | |
) = concat_noise_pred.chunk(2, dim=0) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) | |
else: | |
noise_pred = concat_noise_pred | |
(style_noise_pred, source_noise_pred, mutual_noise_pred) = noise_pred.chunk(3, dim=0) | |
noise = torch.randn_like( | |
source_noise_pred | |
) | |
if isinstance(self.scheduler, LCMScheduler): | |
mutual_latents, pred_x0_mutual = self.scheduler.step(mutual_noise_pred, t, mutual_latents, return_dict=False) | |
else: | |
ddim_out = self.scheduler.step(mutual_noise_pred, t, mutual_latents) | |
mutual_latents, pred_x0_mutual = ddim_out.prev_sample, ddim_out.pred_original_sample | |
pred_x0 = torch.cat([sty_clean_latents,src_clean_latents,pred_x0_mutual ], dim=0) | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
model_input = torch.cat([sty_latents,src_latents,mutual_latents],dim=0,) | |
# 9. Post-processing | |
if not output_type == "latent": | |
image = self.vae.decode(pred_x0 / self.vae.config.scaling_factor, return_dict=False)[0] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = pred_x0 | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type='np', do_denormalize=do_denormalize) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |