ZePo / utils /pipeline.py
Jinl's picture
add NSFW checker and GPU mode
d360398
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import os
import numpy as np
import PIL
import torch
from packaging import version
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.schedulers import LCMScheduler
from diffusers.utils import PIL_INTERPOLATION, deprecate, logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
logger = logging.get_logger(__name__)
class ZePoPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: LCMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.check_inputs
def check_inputs(
self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None
):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
def prepare_extra_step_kwargs(self, generator, eta):
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min( int(num_inference_steps * strength), num_inference_steps)
init_timestep = max(init_timestep, 1)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
return timesteps, num_inference_steps - t_start
def prepare_latents(self, image, timestep, device,dtype, denoise_model, generator=None):
image = image.to(device=device,dtype=dtype)
batch_size = image.shape[0]
if image.shape[1] == 4:
init_latents = image
else:
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
init_latents = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = self.vae.encode(image).latent_dist.sample(generator)
init_latents = self.vae.config.scaling_factor * init_latents
# add noise to latents using the timestep
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
clean_latents = init_latents
if denoise_model:
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
else:
latents = noise
return latents, clean_latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]],
negative_prompt: Union[str, List[str]]=None,
image: PipelineImageInput = None,
style: PipelineImageInput = None,
strength: float = 0.5,
num_inference_steps: Optional[int] = 50,
original_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
eta: Optional[float] = 1.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
denoise_model: Optional[bool] = True,
fix_step_index = 0,
target_start_step = -1,
save_intermediate = False,
de_bug=False,
):
# 1. Check inputs
self.check_inputs(prompt, strength, callback_steps)
num_inference_steps = int(num_inference_steps * (1/strength))
print(f'num_inference_steps {num_inference_steps} is multiple by {int(1/strength)}.')
# 2. Define call parameters
batch_size = len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=77,
return_tensors="pt"
)
dtype=self.unet.dtype
prompt_embeds = self.text_encoder(text_input.input_ids.to(device))[0]
prompt_embeds=prompt_embeds.to(dtype=dtype, device=device)
#print("input text embeddings :", prompt_embeds.shape)
if guidance_scale > 1.:
max_length = text_input.input_ids.shape[-1]
if negative_prompt:
uc_text = negative_prompt
else:
uc_text = ""
# uc_text = "ugly, tiling, poorly drawn hands, poorly drawn feet, body out of frame, cut off, low contrast, underexposed, distorted face"
unconditional_input = self.tokenizer(
[uc_text] * batch_size,
padding="max_length",
max_length=77,
return_tensors="pt"
)
# unconditional_input.input_ids = unconditional_input.input_ids[:, 1:]
unconditional_embeddings = self.text_encoder(unconditional_input.input_ids.to(device))[0]
unconditional_embeddings=unconditional_embeddings.to(dtype=dtype, device=device)
prompt_embeds = torch.cat([unconditional_embeddings, prompt_embeds], dim=0)
#print("prompt embeds shape: ", prompt_embeds.shape)
# 4. Preprocess image
image = self.image_processor.preprocess(image)
style = self.image_processor.preprocess(style)
# 5. Prepare timesteps
if isinstance(self.scheduler, LCMScheduler):
self.scheduler.set_timesteps(
num_inference_steps=num_inference_steps,
device=device,
original_inference_steps=original_inference_steps)
else:
self.scheduler.set_timesteps(
num_inference_steps=num_inference_steps,
device=device,)
print(f"num_inference_steps is {self.scheduler.timesteps}")
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
#print(f"All timesteps is : {timesteps}")
latent_timestep = torch.tensor([fix_step_index], device=device)
assert timesteps != []
print("The time-steps are: ", timesteps)
# 6. Prepare latent variables
src_latents, src_clean_latents = self.prepare_latents(
image, latent_timestep, device,dtype, denoise_model, generator
)
sty_latents, sty_clean_latents = self.prepare_latents(
style, latent_timestep, device,dtype, denoise_model, generator
)
mutual_latents, _ = self.prepare_latents(
image, timesteps[:1], device, dtype, denoise_model, generator
)
# mutual_latents = src_latents
#latents = torch.cat([sty_t_latents, src_t_latents], dim=0)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
generator = extra_step_kwargs.pop("generator", None)
# 8. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if de_bug:
import pdb; pdb.set_trace()
model_input = torch.cat(
[
sty_latents,
src_latents,
mutual_latents
],
dim=0,
)
# predict the noise residual
if do_classifier_free_guidance:
concat_latent_model_input = torch.cat([model_input] * 2)
concat_prompt_embeds = prompt_embeds
#raise NotImplementedError("Classifier free guidance is not yet supported")
else:
concat_latent_model_input = model_input
concat_prompt_embeds = prompt_embeds
assert len(concat_prompt_embeds) == len(concat_latent_model_input)
timestep = torch.cat([latent_timestep] * (batch_size-1)+[t[None]], dim=0)
if do_classifier_free_guidance:
timestep = torch.cat([timestep] * 2)
concat_noise_pred = self.unet(
concat_latent_model_input,
timestep,
cross_attention_kwargs=cross_attention_kwargs,
encoder_hidden_states=concat_prompt_embeds,
).sample
# perform guidance
if do_classifier_free_guidance:
(
noise_pred,
noise_pred_uncond,
) = concat_noise_pred.chunk(2, dim=0)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
else:
noise_pred = concat_noise_pred
(style_noise_pred, source_noise_pred, mutual_noise_pred) = noise_pred.chunk(3, dim=0)
noise = torch.randn_like(
source_noise_pred
)
if isinstance(self.scheduler, LCMScheduler):
mutual_latents, pred_x0_mutual = self.scheduler.step(mutual_noise_pred, t, mutual_latents, return_dict=False)
else:
ddim_out = self.scheduler.step(mutual_noise_pred, t, mutual_latents)
mutual_latents, pred_x0_mutual = ddim_out.prev_sample, ddim_out.pred_original_sample
pred_x0 = torch.cat([sty_clean_latents,src_clean_latents,pred_x0_mutual ], dim=0)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
model_input = torch.cat([sty_latents,src_latents,mutual_latents],dim=0,)
# 9. Post-processing
if not output_type == "latent":
image = self.vae.decode(pred_x0 / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = pred_x0
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type='np', do_denormalize=do_denormalize)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)