Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2022 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import numpy as np | |
import torch | |
from typing import Optional, Union, Tuple, Dict | |
from PIL import Image | |
from . import merge | |
from .utils import isinstance_str, init_generator | |
def save_images(images,dest, num_rows=1, offset_ratio=0.02): | |
if type(images) is list: | |
num_empty = len(images) % num_rows | |
elif images.ndim == 4: | |
num_empty = images.shape[0] % num_rows | |
else: | |
images = [images] | |
num_empty = 0 | |
pil_img = Image.fromarray(images[-1]) | |
pil_img.save(dest) | |
# display(pil_img) | |
def save_image(images,dest, num_rows=1, offset_ratio=0.02): | |
print(images.shape) | |
pil_img = Image.fromarray(images[0]) | |
pil_img.save(dest) | |
def register_attention_control(model, controller, tome, ratio, sx, sy, de_bug): | |
class AttnProcessor(): | |
def __init__(self,place_in_unet,de_bug): | |
self.place_in_unet = place_in_unet | |
self.de_bug = de_bug | |
def __call__(self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
temb=None, | |
scale=1.0,): | |
# The `Attention` class can call different attention processors / attention functions | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
h = attn.heads | |
is_cross = encoder_hidden_states is not None | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
q = attn.to_q(hidden_states) | |
k = attn.to_k(encoder_hidden_states) | |
v = attn.to_v(encoder_hidden_states) | |
q = attn.head_to_batch_dim(q) | |
k = attn.head_to_batch_dim(k) | |
v = attn.head_to_batch_dim(v) | |
# print('unmerge:', q.shape) | |
#pass | |
attention_probs = attn.get_attention_scores(q, k, attention_mask) # bh,n,n | |
# | |
if is_cross: | |
pass | |
#attention_probs = controller(attention_probs , is_cross, self.place_in_unet) | |
x = hidden_states | |
hidden_states = torch.bmm(attention_probs, v) | |
if not is_cross: | |
if tome: | |
r = int(x.shape[1] * ratio) | |
H = W = int(np.sqrt(x.shape[1])) | |
generator = init_generator(x.device) | |
m, u = merge.bipartite_soft_matching_random2d(x, W, H, sx, sy, r, | |
no_rand=False, generator=generator) | |
x = m(x) | |
m_k = attn.to_k(x) | |
m_v = attn.to_v(x) | |
m_k = attn.head_to_batch_dim(m_k) | |
m_v = attn.head_to_batch_dim(m_v) | |
# print('merged:', m_q.shape) | |
# m_k = k | |
# m_v = v | |
#m_k, m_v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (m_k, m_v)) | |
else: | |
m_k = k | |
m_v = v | |
# if self.de_bug: | |
# import pdb;pdb.set_trace() | |
h_s_re = controller(q, m_k, m_v, attn.heads, attention_probs, attn) | |
if h_s_re != None and hidden_states.shape[0]//attn.heads == 3: | |
hidden_states[2*attn.heads:]=h_s_re | |
if hidden_states.shape[0]//attn.heads != 3 and h_s_re != None: | |
(u_h_s_re, c_h_s_re) = h_s_re | |
if u_h_s_re != None: | |
hidden_states[2*attn.heads:3*attn.heads] = u_h_s_re | |
hidden_states[5*attn.heads:] = c_h_s_re | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
def register_recr(net_, count, place_in_unet): | |
for idx, m in enumerate(net_.modules()): | |
# print(m.__class__.__name__) | |
if m.__class__.__name__ == "Attention": | |
count+=1 | |
m.processor = AttnProcessor( place_in_unet, de_bug) | |
return count | |
cross_att_count = 0 | |
sub_nets = model.unet.named_children() | |
for net in sub_nets: | |
if "down" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "down") | |
elif "up" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "up") | |
elif "mid" in net[0]: | |
cross_att_count += register_recr(net[1], 0, "mid") | |
controller.num_att_layers = cross_att_count | |
#print(f'this model have {cross_att_count} attn layer') | |
def get_word_inds(text: str, word_place: int, tokenizer): | |
split_text = text.split(" ") | |
if type(word_place) is str: | |
word_place = [i for i, word in enumerate(split_text) if word_place == word] | |
elif type(word_place) is int: | |
word_place = [word_place] | |
out = [] | |
if len(word_place) > 0: | |
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1] | |
cur_len, ptr = 0, 0 | |
for i in range(len(words_encode)): | |
cur_len += len(words_encode[i]) | |
if ptr in word_place: | |
out.append(i + 1) | |
if cur_len >= len(split_text[ptr]): | |
ptr += 1 | |
cur_len = 0 | |
return np.array(out) | |
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int, word_inds: Optional[torch.Tensor]=None): | |
if type(bounds) is float: | |
bounds = 0, bounds | |
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0]) | |
if word_inds is None: | |
word_inds = torch.arange(alpha.shape[2]) | |
alpha[: start, prompt_ind, word_inds] = 0 | |
alpha[start: end, prompt_ind, word_inds] = 1 | |
alpha[end:, prompt_ind, word_inds] = 0 | |
return alpha | |
def get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
tokenizer, max_num_words=77): | |
if type(cross_replace_steps) is not dict: | |
cross_replace_steps = {"default_": cross_replace_steps} | |
if "default_" not in cross_replace_steps: | |
cross_replace_steps["default_"] = (0., 1.) | |
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words) | |
for i in range(len(prompts) - 1): | |
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], | |
i) | |
for key, item in cross_replace_steps.items(): | |
if key != "default_": | |
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))] | |
for i, ind in enumerate(inds): | |
if len(ind) > 0: | |
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind) | |
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words) # time, batch, heads, pixels, words | |
return alpha_time_words | |