File size: 7,609 Bytes
84e90e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d244f70
84e90e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e81c77
84e90e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a70b2
84e90e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import arrow
import gradio as gr
import os
import re
import pandas as pd
from pathlib import Path
from time import sleep
from tqdm import tqdm

from api_calls import *

ROOT_DIR = Path(__file__).resolve().parents[0]

    
def export_to_txt(output):
    today_dt_str = arrow.now(tz="Asia/Taipei").format("YYYYMMDDTHHmmss")
    with open(f"esg_report_summary-{today_dt_str}.txt", "w") as f:
        f.write(output)
    return f"esg_report_summary-{today_dt_str}.txt"

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def add_text(history, text):
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)

def esgsumm_exe(openai_model_name, year, company_name, tone):
    query = "根據您提供的相關資訊和偏好語氣,以繁體中文生成一份符合GRI標準的報告草稿。報告將包括每個GRI披露項目的標題、相關公司行為的概要,以及公司的具體措施和效果。"
    response = api_rag_summ_chain_demo(openai_model_name, query, year, company_name, tone)
    full_anwser = ""
    for chunk in response.iter_content(chunk_size=32):
        if chunk:
            try:
                _c = chunk.decode('utf-8')
            except UnicodeDecodeError:
                _c = " "
            full_anwser += _c
            yield full_anwser
    # for character in response:
    #     full_text += character
    #     yield full_text

def esgqabot(history, openai_model_name, year, company_name):
    query = history[-1][0]
    response = api_rag_qa_chain_demo(openai_model_name, query, year, company_name, history[:-1])
    history[-1][1] = ""
    for chunk in response.iter_content(chunk_size=32):
        if chunk:
            try:
                _c = chunk.decode('utf-8')
            except UnicodeDecodeError:
                _c = " "
            history[-1][1] += _c
            yield history
    # for character in response:
    #     history[-1][1] += character
    #     yield history


css = """
#center {text-align: center}
footer {visibility: hidden}
a {color: rgb(255, 206, 10) !important}
"""
with gr.Blocks(css=css, theme=gr.themes.Monochrome(neutral_hue="lime")) as demo:

    gr.HTML("<h1>ESG RAG Playground</h1>", elem_id="center")
    gr.Markdown("Made by `Abao`", elem_id="center")
    gr.Markdown("---")

    # esgsumm
    with gr.Tab("ESG Report Summarization"):
        gr.HTML("<h2>Report Summarization</h2><p>Summarize report with tone & schema.</p>", elem_id="center")
        with gr.Row():
            with gr.Group():
                gr.Markdown("### Configuration", elem_id="center")
                esgsumm_report_tone = gr.Dropdown(
                    label="Tone", 
                    choices=["富有創意", "中庸", "精確"])
                esgsumm_openai_model_name = gr.Dropdown(
                    label="OpenAI Model", 
                    choices=["gpt-4-turbo-preview", "gpt-3.5-turbo"])
                esgsumm_year = gr.Dropdown(
                    label="Year",
                    choices=["111", "110", "109"]
                )
                esgsumm_company_name = gr.Dropdown(
                    label="Company Name",
                    choices=["台泥", "聯電", "裕融", "大同", "台積電", "鴻海", "中鋼", "中華電信"]
                )
                esgsumm_report_gen_button = gr.Button("Generate Report")

        with gr.Column():
                gr.Markdown("## Generate ESG Summarization", elem_id="center")
                with gr.Accordion("Revise Your Prompt", open=False):
                    esgsumm_checkbox_replace = gr.Checkbox(label="Replace with new prompt")
                    esgsumm_prompt_tmpl = gr.Textbox(
                        label="希望用於本次問答的prompt",
                        info="必須使用到的變數:{filtered_data}、{query}",
                        value="",
                        interactive=True,
                    )
                esgsumm_report_output = gr.Textbox(
                    label="Report Output",
                    interactive=False,
                    scale=4,
                )
                esgsumm_download_btn = gr.Button("Export Summary")
                esgsumm_download_file = gr.File(
                    label="Download Summary Text", file_types=[".txt"]
                )


    # esgqa
    with gr.Tab("ESG QA"):
        gr.HTML("<h2>ParallelQA (GPT-4 like)</h2><p>Test multiple LLMs at once.</p>", elem_id="center")
        with gr.Row():
            with gr.Group():
                gr.Markdown("### Configuration", elem_id="center")
                esgqa_openai_model_name = gr.Dropdown(
                    label="OpenAI Model", 
                    choices=["gpt-4-turbo-preview", "gpt-3.5-turbo"])
                esgqa_year = gr.Dropdown(
                    label="Year",
                    choices=["111", "110", "109"]
                )
                esgqa_company_name = gr.Dropdown(
                    label="Company Name",
                    choices=["台泥", "聯電", "裕融", "大同", "台積電", "鴻海", "中鋼", "中華電信"]
                )

            with gr.Column():
                gr.Markdown("## Chat with ESGQABot", elem_id="center")
                with gr.Accordion("Revise Your Prompt", open=False):
                    esgqa_checkbox_replace = gr.Checkbox(label="Replace with new prompt")
                    esgqa_prompt_tmpl = gr.Textbox(
                        label="希望用於本次問答的prompt",
                        info="必須使用到的變數:{filtered_data}、{query}",
                        value="",
                        interactive=True,
                    )
                esgqa_chatbot = gr.Chatbot(
                    [(None, "我是 ESGQABot\n有什麼能為您服務的嗎?")],
                    elem_id="chatbot",
                    scale=1,
                    height=700,
                    bubble_full_width=False
                )
                with gr.Row():
                    esgqa_chatbot_input = gr.Textbox(
                        scale=4,
                        show_label=False,
                        placeholder="Enter text and press enter, or upload an image",
                        container=False,
                    )
                    esgqa_chat_btn = gr.Button("💬")


    # esgsumm
    esgsumm_report_gen_button.click(
        esgsumm_exe, [esgsumm_openai_model_name, esgsumm_year, esgsumm_company_name, esgsumm_report_tone], esgsumm_report_output
    )
    esgsumm_download_btn.click(
        fn=export_to_txt,
        inputs=[esgsumm_report_output],
        outputs=esgsumm_download_file,
    )
    
    # esgqa
    esgqa_chatbot_input.submit(
        add_text, [esgqa_chatbot, esgqa_chatbot_input], [esgqa_chatbot, esgqa_chatbot_input], queue=False
    ).then(
        esgqabot, [esgqa_chatbot, esgqa_openai_model_name, esgqa_year, esgqa_company_name], esgqa_chatbot, api_name="esgqa_response"
    ).then(
        lambda: gr.Textbox(interactive=True), None, [esgqa_chatbot_input], queue=False
    )
    esgqa_chat_btn.click(
        add_text, [esgqa_chatbot, esgqa_chatbot_input], [esgqa_chatbot, esgqa_chatbot_input], queue=False
    ).then(
        esgqabot, [esgqa_chatbot, esgqa_openai_model_name, esgqa_year, esgqa_company_name], esgqa_chatbot, api_name="esgqa_response"
    ).then(
        lambda: gr.Textbox(interactive=True), None, [esgqa_chatbot_input], queue=False
    )
    esgqa_chatbot.like(print_like_dislike, None, None)


if __name__ == "__main__":
    demo.queue().launch(max_threads=10)