Spaces:
Sleeping
Sleeping
File size: 7,417 Bytes
cc63231 6d2622d 9197ebc cc63231 af5d866 6d4c30e cc63231 6d2622d cc63231 63b95ad cc63231 6d2622d cc63231 6d2622d cc63231 6d2622d cc63231 6d2622d cc63231 6d2622d 07e5bed 9197ebc bf0ed8f 9197ebc bf0ed8f 9197ebc bf0ed8f 6a049f9 9197ebc bf0ed8f 6a049f9 9197ebc 07e5bed 9197ebc 07e5bed 6a049f9 9197ebc 6a049f9 07e5bed 9197ebc cc63231 6d2622d cc63231 6d2622d cc63231 6d2622d cc63231 6d2622d cc63231 34787b1 cc63231 6d2622d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import numpy as np
from transformers import pipeline
import chromadb
from sklearn.metrics.pairwise import euclidean_distances
# Load segmentation model
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, tokenizer, device
clip_model, preprocess_val, tokenizer, device = load_clip_model()
# Load chromaDB
client = chromadb.PersistentClient(path="./clothesDB_11GmarketMusinsa")
collection = client.get_collection(name="clothes")
# Helper functions
def load_image_from_url(url, max_retries=3):
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert('RGB')
return img
except (requests.RequestException, Image.UnidentifiedImageError) as e:
if attempt < max_retries - 1:
time.sleep(1)
else:
return None
# ์ธ๊ทธ๋จผํธ ๋ง์คํฌ ๊ธฐ๋ฐ ์๋ฒ ๋ฉ ์ถ์ถ
def get_segmented_embedding(img, final_mask):
img_array = np.array(img)
final_mask_array = np.array(final_mask)
# ๋ง์คํฌ ์ ์ฉ (๋ฐฐ๊ฒฝ์ ํฐ์์ผ๋ก ์ฒ๋ฆฌ)
img_array[final_mask_array == 0] = 255
masked_img = Image.fromarray(img_array)
# ๋ง์คํฌ๋ ์ด๋ฏธ์ง๋ก๋ถํฐ ์๋ฒ ๋ฉ ์ถ์ถ
image_tensor = preprocess_val(masked_img).unsqueeze(0).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().flatten()
def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]):
segments = segmenter(img)
mask_list = []
detected_categories = []
for s in segments:
if s['label'] in clothes:
mask_list.append(s['mask'])
detected_categories.append(s['label'])
final_mask = np.zeros_like(np.array(img)[:, :, 0])
for mask in mask_list:
current_mask = np.array(mask)
final_mask = np.maximum(final_mask, current_mask)
final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255)
img_with_alpha = img.convert("RGBA")
img_with_alpha.putalpha(final_mask)
return img_with_alpha.convert("RGB"), final_mask, detected_categories
def find_similar_images(query_embedding, collection, top_k=5):
# ChromaDB์์ ๊ฐ์ฅ ์ ์ฌํ ์ด๋ฏธ์ง๋ค์ ์ฟผ๋ฆฌํฉ๋๋ค.
results = collection.query(
query_embeddings=query_embedding.reshape(1, -1), # 2D ๋ฐฐ์ด๋ก ๋ณํ
n_results=top_k,
include=['metadatas']
)
# ๋ฉํ๋ฐ์ดํฐ๋ง ์ถ์ถํฉ๋๋ค.
top_metadatas = results['metadatas'][0]
# ๊ฐ ์ด๋ฏธ์ง์ ์๋ฒ ๋ฉ์ ๊ฐ์ ธ์ต๋๋ค.
collection_embeddings = np.array([metadata['embedding'] for metadata in top_metadatas])
# ์ฟผ๋ฆฌ ์๋ฒ ๋ฉ๊ณผ ๋ฐ์ดํฐ๋ฒ ์ด์ค ์๋ฒ ๋ฉ ๊ฐ์ ์ ํด๋ฆฌ๋ ๊ฑฐ๋ฆฌ ๊ณ์ฐ
distances = euclidean_distances(query_embedding.reshape(1, -1), collection_embeddings).flatten()
structured_results = []
for metadata, distance in zip(top_metadatas, distances):
structured_results.append({
'info': metadata,
'similarity': 1 / (1 + distance) # ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ ์ ์ฌ๋ (๊ฑฐ๋ฆฌ๊ฐ ์์์๋ก ์ ์ฌ๋๊ฐ ๋์)
})
return structured_results
# ์ธ์
์ํ ์ด๊ธฐํ
if 'step' not in st.session_state:
st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
st.session_state.query_image_url = ''
if 'detections' not in st.session_state:
st.session_state.detections = []
if 'segmented_image' not in st.session_state:
st.session_state.segmented_image = None
if 'selected_category' not in st.session_state:
st.session_state.selected_category = None
# Streamlit app
st.title("Advanced Fashion Search App")
if st.session_state.step == 'input':
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
if st.button("Detect Clothing"):
if st.session_state.query_image_url:
query_image = load_image_from_url(st.session_state.query_image_url)
if query_image is not None:
st.session_state.query_image = query_image
segmented_image, final_mask, detected_categories = segment_clothing(query_image)
st.session_state.segmented_image = segmented_image
st.session_state.detections = detected_categories
st.image(segmented_image, caption="Segmented Image", use_column_width=True)
if st.session_state.detections:
st.session_state.step = 'select_category'
else:
st.warning("No clothing items detected in the image.")
else:
st.error("Failed to load the image. Please try another URL.")
else:
st.warning("Please enter an image URL.")
elif st.session_state.step == 'select_category':
st.image(st.session_state.segmented_image, caption="Segmented Image with Detected Categories", use_column_width=True)
st.subheader("Detected Clothing Categories:")
if st.session_state.detections:
selected_category = st.selectbox("Select a category to search:", st.session_state.detections)
if st.button("Search Similar Items"):
st.session_state.selected_category = selected_category
st.session_state.step = 'show_results'
else:
st.warning("No categories detected.")
elif st.session_state.step == 'show_results':
original_image = st.session_state.query_image.convert("RGB")
st.image(original_image, caption="Original Image", use_column_width=True)
# ์ธ๊ทธ๋จผํธ๋ ์ด๋ฏธ์ง์์ ์๋ฒ ๋ฉ ์ถ์ถ
query_embedding = get_segmented_embedding(st.session_state.query_image, st.session_state.segmented_image)
similar_images = find_similar_images(query_embedding, collection)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
category = img['info'].get('category')
if category:
st.write(f"Category: {category}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
if st.button("Start New Search"):
st.session_state.step = 'input'
st.session_state.query_image_url = ''
st.session_state.detections = []
st.session_state.segmented_image = None
|