File size: 7,417 Bytes
cc63231
 
 
 
 
 
 
 
 
6d2622d
9197ebc
cc63231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af5d866
6d4c30e
 
cc63231
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2622d
 
 
 
 
 
 
 
 
 
 
cc63231
 
 
63b95ad
cc63231
 
 
 
 
 
 
 
6d2622d
cc63231
6d2622d
cc63231
 
6d2622d
cc63231
6d2622d
 
cc63231
 
6d2622d
 
07e5bed
9197ebc
bf0ed8f
9197ebc
bf0ed8f
9197ebc
bf0ed8f
6a049f9
9197ebc
bf0ed8f
6a049f9
9197ebc
 
 
 
 
 
07e5bed
9197ebc
07e5bed
6a049f9
9197ebc
6a049f9
07e5bed
 
 
9197ebc
cc63231
 
 
 
 
 
 
6d2622d
cc63231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2622d
 
cc63231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2622d
cc63231
 
6d2622d
 
 
cc63231
 
 
 
 
 
34787b1
cc63231
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2622d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import numpy as np
from transformers import pipeline
import chromadb
from sklearn.metrics.pairwise import euclidean_distances  

# Load segmentation model
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")

# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
    model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
    tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    return model, preprocess_val, tokenizer, device

clip_model, preprocess_val, tokenizer, device = load_clip_model()

# Load chromaDB
client = chromadb.PersistentClient(path="./clothesDB_11GmarketMusinsa")
collection = client.get_collection(name="clothes")

# Helper functions
def load_image_from_url(url, max_retries=3):
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content)).convert('RGB')
            return img
        except (requests.RequestException, Image.UnidentifiedImageError) as e:
            if attempt < max_retries - 1:
                time.sleep(1)
            else:
                return None

# ์„ธ๊ทธ๋จผํŠธ ๋งˆ์Šคํฌ ๊ธฐ๋ฐ˜ ์ž„๋ฒ ๋”ฉ ์ถ”์ถœ
def get_segmented_embedding(img, final_mask):
    img_array = np.array(img)
    final_mask_array = np.array(final_mask)
    
    # ๋งˆ์Šคํฌ ์ ์šฉ (๋ฐฐ๊ฒฝ์„ ํฐ์ƒ‰์œผ๋กœ ์ฒ˜๋ฆฌ)
    img_array[final_mask_array == 0] = 255
    masked_img = Image.fromarray(img_array)
    
    # ๋งˆ์Šคํฌ๋œ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ ์ž„๋ฒ ๋”ฉ ์ถ”์ถœ
    image_tensor = preprocess_val(masked_img).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = clip_model.encode_image(image_tensor)
        image_features /= image_features.norm(dim=-1, keepdim=True)
    return image_features.cpu().numpy().flatten()

def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]):
    segments = segmenter(img)
    mask_list = []
    detected_categories = []
    for s in segments:
        if s['label'] in clothes:
            mask_list.append(s['mask'])
            detected_categories.append(s['label'])

    final_mask = np.zeros_like(np.array(img)[:, :, 0])
    for mask in mask_list:
        current_mask = np.array(mask)
        final_mask = np.maximum(final_mask, current_mask)

    final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255)
    img_with_alpha = img.convert("RGBA")
    img_with_alpha.putalpha(final_mask)

    return img_with_alpha.convert("RGB"), final_mask, detected_categories

def find_similar_images(query_embedding, collection, top_k=5):
    # ChromaDB์—์„œ ๊ฐ€์žฅ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€๋“ค์„ ์ฟผ๋ฆฌํ•ฉ๋‹ˆ๋‹ค.
    results = collection.query(
        query_embeddings=query_embedding.reshape(1, -1),  # 2D ๋ฐฐ์—ด๋กœ ๋ณ€ํ™˜
        n_results=top_k,
        include=['metadatas']  
    )
    
    # ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ๋งŒ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค.
    top_metadatas = results['metadatas'][0]  
    
    # ๊ฐ ์ด๋ฏธ์ง€์˜ ์ž„๋ฒ ๋”ฉ์„ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค.
    collection_embeddings = np.array([metadata['embedding'] for metadata in top_metadatas])
    
    # ์ฟผ๋ฆฌ ์ž„๋ฒ ๋”ฉ๊ณผ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ์ž„๋ฒ ๋”ฉ ๊ฐ„์˜ ์œ ํด๋ฆฌ๋“œ ๊ฑฐ๋ฆฌ ๊ณ„์‚ฐ
    distances = euclidean_distances(query_embedding.reshape(1, -1), collection_embeddings).flatten()

    structured_results = []
    for metadata, distance in zip(top_metadatas, distances):
        structured_results.append({
            'info': metadata,
            'similarity': 1 / (1 + distance)  # ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜ ์œ ์‚ฌ๋„ (๊ฑฐ๋ฆฌ๊ฐ€ ์ž‘์„์ˆ˜๋ก ์œ ์‚ฌ๋„๊ฐ€ ๋†’์Œ)
        })
    
    return structured_results


# ์„ธ์…˜ ์ƒํƒœ ์ดˆ๊ธฐํ™”
if 'step' not in st.session_state:
    st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
    st.session_state.query_image_url = ''
if 'detections' not in st.session_state:
    st.session_state.detections = []
if 'segmented_image' not in st.session_state:
    st.session_state.segmented_image = None
if 'selected_category' not in st.session_state:
    st.session_state.selected_category = None

# Streamlit app
st.title("Advanced Fashion Search App")

if st.session_state.step == 'input':
    st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
    if st.button("Detect Clothing"):
        if st.session_state.query_image_url:
            query_image = load_image_from_url(st.session_state.query_image_url)
            if query_image is not None:
                st.session_state.query_image = query_image
                segmented_image, final_mask, detected_categories = segment_clothing(query_image)
                st.session_state.segmented_image = segmented_image
                st.session_state.detections = detected_categories
                st.image(segmented_image, caption="Segmented Image", use_column_width=True)
                if st.session_state.detections:
                    st.session_state.step = 'select_category'
                else:
                    st.warning("No clothing items detected in the image.")
            else:
                st.error("Failed to load the image. Please try another URL.")
        else:
            st.warning("Please enter an image URL.")

elif st.session_state.step == 'select_category':
    st.image(st.session_state.segmented_image, caption="Segmented Image with Detected Categories", use_column_width=True)
    st.subheader("Detected Clothing Categories:")
    
    if st.session_state.detections:
        selected_category = st.selectbox("Select a category to search:", st.session_state.detections)
        if st.button("Search Similar Items"):
            st.session_state.selected_category = selected_category
            st.session_state.step = 'show_results'
    else:
        st.warning("No categories detected.")

elif st.session_state.step == 'show_results':
    original_image = st.session_state.query_image.convert("RGB")
    st.image(original_image, caption="Original Image", use_column_width=True)
    
    # ์„ธ๊ทธ๋จผํŠธ๋œ ์ด๋ฏธ์ง€์—์„œ ์ž„๋ฒ ๋”ฉ ์ถ”์ถœ
    query_embedding = get_segmented_embedding(st.session_state.query_image, st.session_state.segmented_image)
    
    similar_images = find_similar_images(query_embedding, collection)
    
    st.subheader("Similar Items:")
    for img in similar_images:
        col1, col2 = st.columns(2)
        with col1:
            st.image(img['info']['image_url'], use_column_width=True)
        with col2:
            st.write(f"Name: {img['info']['name']}")
            st.write(f"Brand: {img['info']['brand']}")
            category = img['info'].get('category')
            if category:
                st.write(f"Category: {category}")
            st.write(f"Price: {img['info']['price']}")
            st.write(f"Discount: {img['info']['discount']}%")
            st.write(f"Similarity: {img['similarity']:.2f}")

    if st.button("Start New Search"):
        st.session_state.step = 'input'
        st.session_state.query_image_url = ''
        st.session_state.detections = []
        st.session_state.segmented_image = None