File size: 8,619 Bytes
2c7cf10
 
 
 
 
 
 
 
 
 
ccc944f
2c7cf10
 
 
 
 
 
 
af1b60c
 
199a6fa
 
af1b60c
2c7cf10
 
af1b60c
2c7cf10
 
 
 
af1b60c
2c7cf10
ccc944f
144f792
2c7cf10
ccc944f
2c7cf10
b646871
2c7cf10
 
 
 
 
 
 
 
 
 
 
 
 
b646871
2c7cf10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc944f
2c7cf10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc944f
 
 
2c7cf10
 
ccc944f
 
 
b646871
2c7cf10
ccc944f
2c7cf10
 
 
2ffe9fa
b646871
2c7cf10
 
 
 
 
 
 
 
 
 
 
 
 
 
af1b60c
2c7cf10
 
 
 
af1b60c
2c7cf10
 
 
 
ccc944f
2c7cf10
 
 
ccc944f
2c7cf10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1a95b
 
 
2c7cf10
 
 
 
 
 
 
 
 
 
b646871
2c7cf10
 
 
 
 
 
 
 
 
 
 
 
 
 
bc1a95b
 
 
2c7cf10
 
 
 
3d166f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import json
import numpy as np
import onnxruntime as ort
from ultralytics import YOLO
import cv2
import chromadb

@st.cache_resource
def load_clip_model():
    model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
    tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
    
    # ํŒŒ์ธํŠœ๋‹ํ•œ ๋ชจ๋ธ์˜ state_dict ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
    #state_dict = torch.load('./accessory_clip.pt', map_location=torch.device('cpu'))
    #model.load_state_dict(state_dict)  # ๋ชจ๋ธ์— state_dict ์ ์šฉ
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    
    return model, preprocess_val, tokenizer, device

clip_model, preprocess_val, tokenizer, device = load_clip_model()


@st.cache_resource
def load_yolo_model():
    return YOLO("./accessaries.pt")

yolo_model = load_yolo_model()

# URL์—์„œ ์ด๋ฏธ์ง€ ๋กœ๋“œ
def load_image_from_url(url, max_retries=3):
    for attempt in range(max_retries):
        try:
            response = requests.get(url, timeout=10)
            response.raise_for_status()
            img = Image.open(BytesIO(response.content)).convert('RGB')
            return img
        except (requests.RequestException, Image.UnidentifiedImageError) as e:
            if attempt < max_retries - 1:
                time.sleep(1)
            else:
                return None

# ChromaDB ํด๋ผ์ด์–ธํŠธ ์„ค์ •
client = chromadb.PersistentClient(path="./accessaryDB")
collection = client.get_collection(name="accessary_items_ver2")

def get_image_embedding(image):
    image_tensor = preprocess_val(image).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = clip_model.encode_image(image_tensor)
        image_features /= image_features.norm(dim=-1, keepdim=True)
    return image_features.cpu().numpy()

def get_text_embedding(text):
    text_tokens = tokenizer([text]).to(device)
    with torch.no_grad():
        text_features = clip_model.encode_text(text_tokens)
        text_features /= text_features.norm(dim=-1, keepdim=True)
    return text_features.cpu().numpy()

def get_all_embeddings_from_collection(collection):
    all_embeddings = collection.get(include=['embeddings'])['embeddings']
    return np.array(all_embeddings)

def get_metadata_from_ids(collection, ids):
    results = collection.get(ids=ids)
    return results['metadatas']
    
def find_similar_images(query_embedding, collection, top_k=5):
    database_embeddings = get_all_embeddings_from_collection(collection)
    similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
    top_indices = np.argsort(similarities)[::-1][:top_k]
    
    all_data = collection.get(include=['metadatas'])['metadatas']
    
    top_metadatas = [all_data[idx] for idx in top_indices]
    
    results = []
    for idx, metadata in enumerate(top_metadatas):
        results.append({
            'info': metadata,
            'similarity': similarities[top_indices[idx]]
        })
    return results

def detect_clothing(image):
    results = yolo_model(image)
    detections = results[0].boxes.data.cpu().numpy()
    categories = []
    for detection in detections:
        x1, y1, x2, y2, conf, cls = detection
        category = yolo_model.names[int(cls)]
        if category in ['Bracelets', 'Broches', 'bag', 'belt', 'earring', 'maangtika', 'necklace', 'nose ring', 'ring', 'tiara']:
            categories.append({
                'category': category,
                'bbox': [int(x1), int(y1), int(x2), int(y2)],
                'confidence': conf
            })
    return categories

# ์ด๋ฏธ์ง€ ์ž๋ฅด๊ธฐ
def crop_image(image, bbox):
    return image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))

# ์„ธ์…˜ ์ƒํƒœ ์ดˆ๊ธฐํ™”
if 'step' not in st.session_state:
    st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
    st.session_state.query_image_url = ''
if 'detections' not in st.session_state:
    st.session_state.detections = []
if 'selected_category' not in st.session_state:
    st.session_state.selected_category = None

# Streamlit app
st.title("Accessary Search App")

# ๋‹จ๊ณ„๋ณ„ ์ฒ˜๋ฆฌ
if st.session_state.step == 'input':
    st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
    if st.button("Detect accesseary"):
        if st.session_state.query_image_url:
            query_image = load_image_from_url(st.session_state.query_image_url)
            if query_image is not None:
                st.session_state.query_image = query_image
                st.session_state.detections = detect_clothing(query_image)
                if st.session_state.detections:
                    st.session_state.step = 'select_category'
                else:
                    st.warning("No items detected in the image.")
            else:
                st.error("Failed to load the image. Please try another URL.")
        else:
            st.warning("Please enter an image URL.")

elif st.session_state.step == 'select_category':
    st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
    st.subheader("Detected Clothing Items:")
    
    for detection in st.session_state.detections:
        col1, col2 = st.columns([1, 3])
        with col1:
            st.write(f"{detection['category']} (Confidence: {detection['confidence']:.2f})")
        with col2:
            cropped_image = crop_image(st.session_state.query_image, detection['bbox'])
            st.image(cropped_image, caption=detection['category'], use_column_width=True)
    
    options = [f"{d['category']} (Confidence: {d['confidence']:.2f})" for d in st.session_state.detections]
    selected_option = st.selectbox("Select a category to search:", options)
    
    if st.button("Search Similar Items"):
        st.session_state.selected_category = selected_option
        st.session_state.step = 'show_results'

elif st.session_state.step == 'show_results':
    st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
    selected_detection = next(d for d in st.session_state.detections 
                              if f"{d['category']} (Confidence: {d['confidence']:.2f})" == st.session_state.selected_category)
    cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox'])
    st.image(cropped_image, caption="Cropped Image", use_column_width=True)
    query_embedding = get_image_embedding(cropped_image)
    similar_images = find_similar_images(query_embedding, collection)
    
    st.subheader("Similar Items:")
    for img in similar_images:
        col1, col2 = st.columns(2)
        with col1:
            st.image(img['info']['image_url'], use_column_width=True)
        with col2:
            st.write(f"Name: {img['info']['name']}")
            st.write(f"Brand: {img['info']['brand']}")
            category = img['info'].get('category')
            if category:  
                st.write(f"Category: {category}")
            st.write(f"Price: {img['info']['price']}")
            st.write(f"Discount: {img['info']['discount']}%")
            st.write(f"Similarity: {img['similarity']:.2f}")
    
    if st.button("Start New Search"):
        st.session_state.step = 'input'
        st.session_state.query_image_url = ''
        st.session_state.detections = []
        st.session_state.selected_category = None


else:  # Text search
    query_text = st.text_input("Enter search text:")
    if st.button("Search by Text"):
        if query_text:
            text_embedding = get_text_embedding(query_text)
            similar_images = find_similar_images(text_embedding, collection)
            st.subheader("Similar Items:")
            for img in similar_images:
                col1, col2 = st.columns(2)
                with col1:
                    st.image(img['info']['image_url'], use_column_width=True)
                with col2:
                    st.write(f"Name: {img['info']['name']}")
                    st.write(f"Brand: {img['info']['brand']}")
                    category = img['info'].get('category')
                    if category:  
                        st.write(f"Category: {category}")
                    st.write(f"Price: {img['info']['price']}")
                    st.write(f"Discount: {img['info']['discount']}%")
                    st.write(f"Similarity: {img['similarity']:.2f}")
        else:
            st.warning("Please enter a search text.")