Spaces:
Sleeping
Sleeping
File size: 11,361 Bytes
cc63231 6d2622d 9197ebc 8392151 b232392 65364e8 cc63231 6c6cdc2 6d4c30e cc63231 65364e8 6d2622d cc63231 63b95ad cc63231 394e02a cc63231 6d2622d cc63231 6d2622d cc63231 6d2622d cc63231 6d2622d cc63231 6d2622d f56169b 9197ebc f56169b 3c76019 bc20d70 8392151 3c76019 8392151 3c76019 8392151 bc20d70 8392151 1576524 a76fd9c cc63231 6d2622d cc63231 6d2622d cc63231 6d2622d cc63231 6d2622d 3d91383 cc63231 34787b1 cc63231 6d2622d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import streamlit as st
import open_clip
import torch
import requests
from PIL import Image
from io import BytesIO
import time
import numpy as np
from transformers import pipeline
import chromadb
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.preprocessing import normalize
from sklearn.metrics.pairwise import cosine_similarity
import faiss
# Load segmentation model
segmenter = pipeline(model="mattmdjaga/segformer_b2_clothes")
# Load CLIP model and tokenizer
@st.cache_resource
def load_clip_model():
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, preprocess_val, tokenizer, device
clip_model, preprocess_val, tokenizer, device = load_clip_model()
# Load chromaDB
client = chromadb.PersistentClient(path="./fashion_multimodal_db")
collection = client.get_collection(name="fashion_multimodal")
# Helper functions
def load_image_from_url(url, max_retries=3):
for attempt in range(max_retries):
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
img = Image.open(BytesIO(response.content)).convert('RGB')
return img
except (requests.RequestException, Image.UnidentifiedImageError) as e:
if attempt < max_retries - 1:
time.sleep(1)
else:
return None
# ์ธ๊ทธ๋จผํธ ๋ง์คํฌ ๊ธฐ๋ฐ ์๋ฒ ๋ฉ ์ถ์ถ
def get_segmented_embedding(img, final_mask):
img_array = np.array(img)
final_mask_array = np.array(final_mask)
# ๋ง์คํฌ ์ ์ฉ (๋ฐฐ๊ฒฝ์ ํฐ์์ผ๋ก ์ฒ๋ฆฌ)
img_array[final_mask_array == 0] = 255
masked_img = Image.fromarray(img_array)
# ๋ง์คํฌ๋ ์ด๋ฏธ์ง๋ก๋ถํฐ ์๋ฒ ๋ฉ ์ถ์ถ
image_tensor = preprocess_val(masked_img).unsqueeze(0).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().flatten()
def get_image_embedding(image):
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = clip_model.encode_image(image_tensor)
image_features /= image_features.norm(dim=-1, keepdim=True) # ์ ๊ทํ
return image_features.cpu().numpy().flatten()
def segment_clothing(img, clothes=["Hat", "Upper-clothes", "Skirt", "Pants", "Dress", "Belt", "Left-shoe", "Right-shoe", "Scarf"]):
segments = segmenter(img)
mask_list = []
detected_categories = []
for s in segments:
if s['label'] in clothes:
mask_list.append(s['mask'])
detected_categories.append(s['label'])
final_mask = np.zeros_like(np.array(img)[:, :, 0])
for mask in mask_list:
current_mask = np.array(mask)
final_mask = np.maximum(final_mask, current_mask)
final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255)
img_with_alpha = img.convert("RGBA")
img_with_alpha.putalpha(final_mask)
return img_with_alpha.convert("RGB"), final_mask, detected_categories
#def find_similar_images(query_embedding, collection, top_k=5):
# ChromaDB์์ ๊ฐ์ฅ ์ ์ฌํ ์ด๋ฏธ์ง๋ค์ ์ฟผ๋ฆฌํฉ๋๋ค.
# results = collection.query(
# query_embeddings=query_embedding.reshape(1, -1), # 2D ๋ฐฐ์ด๋ก ๋ณํ
# n_results=top_k,
# include=['metadatas', 'embeddings'] # ์๋ฒ ๋ฉ์ ํฌํจํ๋๋ก ์์
# )
#
# # ๋ฉํ๋ฐ์ดํฐ์ ์๋ฒ ๋ฉ์ ์ถ์ถํฉ๋๋ค.
# top_metadatas = results['metadatas'][0]
# top_embeddings = results['embeddings'][0] # ์๋ฒ ๋ฉ ๊ฐ์ ธ์ค๊ธฐ
#
# # ์ ํด๋ฆฌ๋ ๊ฑฐ๋ฆฌ ๊ณ์ฐ
# distances = euclidean_distances(query_embedding.reshape(1, -1), top_embeddings).flatten()
#
# structured_results = []
# for metadata, distance in zip(top_metadatas, distances):
# structured_results.append({
# 'info': metadata,
# 'similarity': 1 / (1 + distance) # ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ ์ ์ฌ๋ (๊ฑฐ๋ฆฌ๊ฐ ์์์๋ก ์ ์ฌ๋๊ฐ ๋์)
# })
# return structured_results
#def find_similar_images(query_embedding, collection, top_k=5):
# # ChromaDB ์ฟผ๋ฆฌ
# results = collection.query(
# query_embeddings=query_embedding.reshape(1, -1), # 2D ๋ฐฐ์ด๋ก ๋ณํ
# n_results=top_k,
# include=['metadatas', 'embeddings'] # ๋ฉํ๋ฐ์ดํฐ์ ์๋ฒ ๋ฉ ํฌํจ
# )
#
# # ๋ฉํ๋ฐ์ดํฐ์ ์๋ฒ ๋ฉ ์ถ์ถ
# top_metadatas = results['metadatas'][0]
# top_embeddings = np.array(results['embeddings'][0]) # numpy ๋ฐฐ์ด๋ก ๋ณํ
# # ์ฝ์ฌ์ธ ์ ์ฌ๋ ๊ณ์ฐ
# query_embedding_normalized = normalize(query_embedding.reshape(1, -1), axis=1)
# top_embeddings_normalized = normalize(top_embeddings, axis=1)
# similarities = cosine_similarity(query_embedding_normalized, top_embeddings_normalized).flatten()
# structured_results = []
# for metadata, similarity in zip(top_metadatas, similarities):
# structured_results.append({
# 'info': metadata,
# 'similarity': similarity
# })
#
# return structured_results
def find_similar_images(query_embedding, collection, top_k=5):
# ChromaDB์์ ์๋ฒ ๋ฉ๊ณผ ๋ฉํ๋ฐ์ดํฐ๋ฅผ ๊ฐ์ ธ์ต๋๋ค.
all_data = collection.get(include=['embeddings', 'metadatas'])
all_embeddings = np.array(all_data['embeddings']).astype('float32') # faiss๋ float32 ํ์
all_metadatas = all_data['metadatas']
# faiss ์ธ๋ฑ์ค๋ฅผ L2 ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ์ผ๋ก ์์ฑ (์ฝ์ฌ์ธ ์ ์ฌ๋๋ ์ ๊ทํ ํ์)
faiss.normalize_L2(all_embeddings) # L2 ์ ๊ทํ
index = faiss.IndexFlatIP(all_embeddings.shape[1]) # IP๋ Inner Product(์ฝ์ฌ์ธ ์ ์ฌ๋)
index.add(all_embeddings)
# ์ฟผ๋ฆฌ ์๋ฒ ๋ฉ ์ ๊ทํ ํ faiss ๊ฒ์
query_embedding = query_embedding.reshape(1, -1).astype('float32')
faiss.normalize_L2(query_embedding)
distance, indices = index.search(query_embedding, top_k)
# ๊ฒ์๋ ์์ ๊ฒฐ๊ณผ๋ฅผ ๋ฐํ
structured_results = []
for metadata, idx in zip(all_metadatas, indices[0]):
structured_results.append({
'info': metadata,
'similarity': 1-distance
})
return structured_results
#def find_similar_images(query_embedding, collection, top_k=5, batch_size=500):
# query_embedding = query_embedding.reshape(1, -1) # ์ฟผ๋ฆฌ ์๋ฒ ๋ฉ ์ฐจ์ ์กฐ์
#
# # ๋ชจ๋ ์๋ฒ ๋ฉ๊ณผ ๋ฉํ๋ฐ์ดํฐ๋ฅผ ํ ๋ฒ์ ๊ฐ์ ธ์ด
# all_data = collection.get(include=['embeddings', 'metadatas'])
# all_embeddings = np.array(all_data['embeddings'])
# all_metadatas = all_data['metadatas']
#
# all_results = []
#
# # ์ ์ฒด ๋ฐ์ดํฐ๋ฅผ batch_size์ฉ ๋๋์ด ์ฒ๋ฆฌ
# for start in range(0, len(all_embeddings), batch_size):
# end = start + batch_size
# batch_embeddings = all_embeddings[start:end]
# batch_metadatas = all_metadatas[start:end]
#
# # ์ฝ์ฌ์ธ ์ ์ฌ๋ ๊ณ์ฐ
# similarities = cosine_similarity(query_embedding, batch_embeddings).flatten()
#
# # ํ์ฌ ๋ฐฐ์น์์ ์ ์ฌ๋์ ๋ฉํ๋ฐ์ดํฐ๋ฅผ ์์ผ๋ก ๋ฌถ์ด ์ถ๊ฐ
# batch_results = [{'info': metadata, 'similarity': similarity} for similarity, metadata in zip(similarities, batch_metadatas)]
# all_results.extend(batch_results)
#
# # ์ ์ฒด ๊ฒฐ๊ณผ ์ค์์ ์ ์ฌ๋๊ฐ ๋์ ์์๋๋ก top_k ๊ฐ๋ง ์ ํ
# sorted_results = sorted(all_results, key=lambda x: x['similarity'], reverse=True)[:top_k]
#
# return sorted_results
# ์ธ์
์ํ ์ด๊ธฐํ
if 'step' not in st.session_state:
st.session_state.step = 'input'
if 'query_image_url' not in st.session_state:
st.session_state.query_image_url = ''
if 'detections' not in st.session_state:
st.session_state.detections = []
if 'segmented_image' not in st.session_state:
st.session_state.segmented_image = None
if 'selected_category' not in st.session_state:
st.session_state.selected_category = None
# Streamlit app
st.title("Advanced Fashion Search App")
if st.session_state.step == 'input':
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
if st.button("Detect Clothing"):
if st.session_state.query_image_url:
query_image = load_image_from_url(st.session_state.query_image_url)
if query_image is not None:
st.session_state.query_image = query_image
segmented_image, final_mask, detected_categories = segment_clothing(query_image)
st.session_state.segmented_image = segmented_image
st.session_state.detections = detected_categories
st.image(segmented_image, caption="Segmented Image", use_column_width=True)
if st.session_state.detections:
st.session_state.step = 'select_category'
else:
st.warning("No clothing items detected in the image.")
else:
st.error("Failed to load the image. Please try another URL.")
else:
st.warning("Please enter an image URL.")
elif st.session_state.step == 'select_category':
st.image(st.session_state.segmented_image, caption="Segmented Image with Detected Categories", use_column_width=True)
st.subheader("Detected Clothing Categories:")
if st.session_state.detections:
selected_category = st.selectbox("Select a category to search:", st.session_state.detections)
if st.button("Search Similar Items"):
st.session_state.selected_category = selected_category
st.session_state.step = 'show_results'
else:
st.warning("No categories detected.")
elif st.session_state.step == 'show_results':
original_image = st.session_state.query_image.convert("RGB")
st.image(original_image, caption="Original Image", use_column_width=True)
# ์ธ๊ทธ๋จผํธ๋ ์ด๋ฏธ์ง์์ ์๋ฒ ๋ฉ ์ถ์ถ
query_embedding = get_segmented_embedding(st.session_state.query_image, st.session_state.segmented_image)
#query_embedding = get_image_embedding(st.session_state.segmented_image)
similar_images = find_similar_images(query_embedding, collection)
st.subheader("Similar Items:")
for img in similar_images:
col1, col2 = st.columns(2)
with col1:
st.image(img['info']['image_url'], use_column_width=True)
with col2:
st.write(f"Name: {img['info']['name']}")
st.write(f"Brand: {img['info']['brand']}")
category = img['info'].get('category')
if category:
st.write(f"Category: {category}")
st.write(f"Price: {img['info']['price']}")
st.write(f"Discount: {img['info']['discount']}%")
st.write(f"Similarity: {img['similarity']:.2f}")
if st.button("Start New Search"):
st.session_state.step = 'input'
st.session_state.query_image_url = ''
st.session_state.detections = []
st.session_state.segmented_image = None
|