Spaces:
Sleeping
Sleeping
Upload 9 files
Browse files- .gitattributes +36 -35
- Dockerfile +26 -0
- README.md +13 -12
- accessaryDB/682a1a15-1caf-49d8-b42d-7cff88354fa2/data_level0.bin +3 -0
- accessaryDB/682a1a15-1caf-49d8-b42d-7cff88354fa2/header.bin +3 -0
- accessaryDB/682a1a15-1caf-49d8-b42d-7cff88354fa2/length.bin +3 -0
- accessary_weights.onnx +3 -0
- app.py +209 -0
- requirements.txt +18 -0
.gitattributes
CHANGED
@@ -1,35 +1,36 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
clothesDB/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use Python 3.10
|
2 |
+
FROM python:3.10-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the current directory contents into the container at /app
|
8 |
+
COPY . /app
|
9 |
+
|
10 |
+
# Install system dependencies
|
11 |
+
RUN apt-get update && apt-get install -y \
|
12 |
+
build-essential \
|
13 |
+
curl \
|
14 |
+
software-properties-common \
|
15 |
+
git \
|
16 |
+
&& rm -rf /var/lib/apt/lists/*
|
17 |
+
|
18 |
+
# Upgrade pip and install required python packages
|
19 |
+
RUN pip install --no-cache-dir --upgrade pip
|
20 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
21 |
+
|
22 |
+
# Make port 8501 available to the world outside this container
|
23 |
+
EXPOSE 8501
|
24 |
+
|
25 |
+
# Run app.py when the container launches
|
26 |
+
CMD ["streamlit", "run", "app.py"]
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.38.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
1 |
+
---
|
2 |
+
title: Itda Nosegmentation
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: purple
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.38.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
accessaryDB/682a1a15-1caf-49d8-b42d-7cff88354fa2/data_level0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:087859641a3f3e1a4061db9e09e79d89cb7c93a6f440ac35177054e84edd526f
|
3 |
+
size 3212000
|
accessaryDB/682a1a15-1caf-49d8-b42d-7cff88354fa2/header.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ec6df10978b056a10062ed99efeef2702fa4a1301fad702b53dd2517103c746
|
3 |
+
size 100
|
accessaryDB/682a1a15-1caf-49d8-b42d-7cff88354fa2/length.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:362388e29bdbd934f2632e034681ddfe492580bccb44c187d7132e9e365f9990
|
3 |
+
size 4000
|
accessary_weights.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7647fb4791077446a1b5ff2fb97fab43af297957ad65ec6d429408431ce5688
|
3 |
+
size 44731025
|
app.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import open_clip
|
3 |
+
import torch
|
4 |
+
import requests
|
5 |
+
from PIL import Image
|
6 |
+
from io import BytesIO
|
7 |
+
import time
|
8 |
+
import json
|
9 |
+
import numpy as np
|
10 |
+
import onnxruntime as ort
|
11 |
+
import cv2
|
12 |
+
import chromadb
|
13 |
+
|
14 |
+
@st.cache_resource
|
15 |
+
def load_clip_model():
|
16 |
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:Marqo/marqo-fashionSigLIP')
|
17 |
+
tokenizer = open_clip.get_tokenizer('hf-hub:Marqo/marqo-fashionSigLIP')
|
18 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
model.to(device)
|
20 |
+
return model, preprocess_val, tokenizer, device
|
21 |
+
|
22 |
+
clip_model, preprocess_val, tokenizer, device = load_clip_model()
|
23 |
+
|
24 |
+
@st.cache_resource
|
25 |
+
def load_onnx_model():
|
26 |
+
session = ort.InferenceSession("./accessary_weights.onnx")
|
27 |
+
return session
|
28 |
+
|
29 |
+
onnx_session = load_onnx_model()
|
30 |
+
|
31 |
+
def load_image_from_url(url, max_retries=3):
|
32 |
+
for attempt in range(max_retries):
|
33 |
+
try:
|
34 |
+
response = requests.get(url, timeout=10)
|
35 |
+
response.raise_for_status()
|
36 |
+
img = Image.open(BytesIO(response.content)).convert('RGB')
|
37 |
+
return img
|
38 |
+
except (requests.RequestException, Image.UnidentifiedImageError) as e:
|
39 |
+
if attempt < max_retries - 1:
|
40 |
+
time.sleep(1)
|
41 |
+
else:
|
42 |
+
return None
|
43 |
+
|
44 |
+
client = chromadb.PersistentClient(path="./accessaryDB")
|
45 |
+
collection = client.get_collection(name="accessary_items_ver2")
|
46 |
+
|
47 |
+
def get_image_embedding(image):
|
48 |
+
image_tensor = preprocess_val(image).unsqueeze(0).to(device)
|
49 |
+
with torch.no_grad():
|
50 |
+
image_features = clip_model.encode_image(image_tensor)
|
51 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
52 |
+
return image_features.cpu().numpy()
|
53 |
+
|
54 |
+
def get_text_embedding(text):
|
55 |
+
text_tokens = tokenizer([text]).to(device)
|
56 |
+
with torch.no_grad():
|
57 |
+
text_features = clip_model.encode_text(text_tokens)
|
58 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
59 |
+
return text_features.cpu().numpy()
|
60 |
+
|
61 |
+
def get_all_embeddings_from_collection(collection):
|
62 |
+
all_embeddings = collection.get(include=['embeddings'])['embeddings']
|
63 |
+
return np.array(all_embeddings)
|
64 |
+
|
65 |
+
def get_metadata_from_ids(collection, ids):
|
66 |
+
results = collection.get(ids=ids)
|
67 |
+
return results['metadatas']
|
68 |
+
|
69 |
+
def find_similar_images(query_embedding, collection, top_k=5):
|
70 |
+
database_embeddings = get_all_embeddings_from_collection(collection)
|
71 |
+
similarities = np.dot(database_embeddings, query_embedding.T).squeeze()
|
72 |
+
top_indices = np.argsort(similarities)[::-1][:top_k]
|
73 |
+
|
74 |
+
all_data = collection.get(include=['metadatas'])['metadatas']
|
75 |
+
|
76 |
+
top_metadatas = [all_data[idx] for idx in top_indices]
|
77 |
+
|
78 |
+
results = []
|
79 |
+
for idx, metadata in enumerate(top_metadatas):
|
80 |
+
results.append({
|
81 |
+
'info': metadata,
|
82 |
+
'similarity': similarities[top_indices[idx]]
|
83 |
+
})
|
84 |
+
return results
|
85 |
+
|
86 |
+
def detect_clothing_onnx(image):
|
87 |
+
input_image = np.array(image.resize((640, 640)), dtype=np.float32)
|
88 |
+
input_image = np.transpose(input_image, [2, 0, 1])
|
89 |
+
input_image = np.expand_dims(input_image, axis=0)
|
90 |
+
input_image /= 255.0
|
91 |
+
|
92 |
+
inputs = {onnx_session.get_inputs()[0].name: input_image}
|
93 |
+
outputs = onnx_session.run(None, inputs)
|
94 |
+
|
95 |
+
detections = outputs[0]
|
96 |
+
categories = []
|
97 |
+
for detection in detections:
|
98 |
+
x1, y1, x2, y2, conf, cls = detection
|
99 |
+
category = str(int(cls))
|
100 |
+
if category in ['Bracelets', 'Broches', 'belt', 'earring', 'maangtika', 'necklace', 'nose ring', 'ring', 'tiara']:
|
101 |
+
categories.append({
|
102 |
+
'category': category,
|
103 |
+
'bbox': [int(x1), int(y1), int(x2), int(y2)],
|
104 |
+
'confidence': conf
|
105 |
+
})
|
106 |
+
return categories
|
107 |
+
|
108 |
+
def crop_image(image, bbox):
|
109 |
+
return image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))
|
110 |
+
|
111 |
+
# 세션 상태 초기화
|
112 |
+
if 'step' not in st.session_state:
|
113 |
+
st.session_state.step = 'input'
|
114 |
+
if 'query_image_url' not in st.session_state:
|
115 |
+
st.session_state.query_image_url = ''
|
116 |
+
if 'detections' not in st.session_state:
|
117 |
+
st.session_state.detections = []
|
118 |
+
if 'selected_category' not in st.session_state:
|
119 |
+
st.session_state.selected_category = None
|
120 |
+
|
121 |
+
# Streamlit app
|
122 |
+
st.title("Advanced Fashion Search App")
|
123 |
+
|
124 |
+
# 단계별 처리
|
125 |
+
if st.session_state.step == 'input':
|
126 |
+
st.session_state.query_image_url = st.text_input("Enter image URL:", st.session_state.query_image_url)
|
127 |
+
if st.button("Detect Clothing"):
|
128 |
+
if st.session_state.query_image_url:
|
129 |
+
query_image = load_image_from_url(st.session_state.query_image_url)
|
130 |
+
if query_image is not None:
|
131 |
+
st.session_state.query_image = query_image
|
132 |
+
st.session_state.detections = detect_clothing_onnx(query_image)
|
133 |
+
if st.session_state.detections:
|
134 |
+
st.session_state.step = 'select_category'
|
135 |
+
else:
|
136 |
+
st.warning("No clothing items detected in the image.")
|
137 |
+
else:
|
138 |
+
st.error("Failed to load the image. Please try another URL.")
|
139 |
+
else:
|
140 |
+
st.warning("Please enter an image URL.")
|
141 |
+
|
142 |
+
# Update the 'select_category' step
|
143 |
+
elif st.session_state.step == 'select_category':
|
144 |
+
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
|
145 |
+
st.subheader("Detected Clothing Items:")
|
146 |
+
|
147 |
+
for detection in st.session_state.detections:
|
148 |
+
col1, col2 = st.columns([1, 3])
|
149 |
+
with col1:
|
150 |
+
st.write(f"{detection['category']} (Confidence: {detection['confidence']:.2f})")
|
151 |
+
with col2:
|
152 |
+
cropped_image = crop_image(st.session_state.query_image, detection['bbox'])
|
153 |
+
st.image(cropped_image, caption=detection['category'], use_column_width=True)
|
154 |
+
|
155 |
+
options = [f"{d['category']} (Confidence: {d['confidence']:.2f})" for d in st.session_state.detections]
|
156 |
+
selected_option = st.selectbox("Select a category to search:", options)
|
157 |
+
|
158 |
+
if st.button("Search Similar Items"):
|
159 |
+
st.session_state.selected_category = selected_option
|
160 |
+
st.session_state.step = 'show_results'
|
161 |
+
|
162 |
+
elif st.session_state.step == 'show_results':
|
163 |
+
st.image(st.session_state.query_image, caption="Query Image", use_column_width=True)
|
164 |
+
selected_detection = next(d for d in st.session_state.detections
|
165 |
+
if f"{d['category']} (Confidence: {d['confidence']:.2f})" == st.session_state.selected_category)
|
166 |
+
cropped_image = crop_image(st.session_state.query_image, selected_detection['bbox'])
|
167 |
+
st.image(cropped_image, caption="Cropped Image", use_column_width=True)
|
168 |
+
query_embedding = get_image_embedding(cropped_image)
|
169 |
+
similar_images = find_similar_images(query_embedding, collection)
|
170 |
+
|
171 |
+
st.subheader("Similar Items:")
|
172 |
+
for img in similar_images:
|
173 |
+
col1, col2 = st.columns(2)
|
174 |
+
with col1:
|
175 |
+
st.image(img['info']['image_url'], use_column_width=True)
|
176 |
+
with col2:
|
177 |
+
st.write(f"Name: {img['info']['name']}")
|
178 |
+
st.write(f"Brand: {img['info']['brand']}")
|
179 |
+
st.write(f"Category: {img['info']['category']}")
|
180 |
+
st.write(f"Price: {img['info']['price']}")
|
181 |
+
st.write(f"Discount: {img['info']['discount']}%")
|
182 |
+
st.write(f"Similarity: {img['similarity']:.2f}")
|
183 |
+
|
184 |
+
if st.button("Start New Search"):
|
185 |
+
st.session_state.step = 'input'
|
186 |
+
st.session_state.query_image_url = ''
|
187 |
+
st.session_state.detections = []
|
188 |
+
st.session_state.selected_category = None
|
189 |
+
|
190 |
+
else: # Text search
|
191 |
+
query_text = st.text_input("Enter search text:")
|
192 |
+
if st.button("Search by Text"):
|
193 |
+
if query_text:
|
194 |
+
text_embedding = get_text_embedding(query_text)
|
195 |
+
similar_images = find_similar_images(text_embedding, collection)
|
196 |
+
st.subheader("Similar Items:")
|
197 |
+
for img in similar_images:
|
198 |
+
col1, col2 = st.columns(2)
|
199 |
+
with col1:
|
200 |
+
st.image(img['info']['image_url'], use_column_width=True)
|
201 |
+
with col2:
|
202 |
+
st.write(f"Name: {img['info']['name']}")
|
203 |
+
st.write(f"Brand: {img['info']['brand']}")
|
204 |
+
st.write(f"Category: {img['info']['category']}")
|
205 |
+
st.write(f"Price: {img['info']['price']}")
|
206 |
+
st.write(f"Discount: {img['info']['discount']}%")
|
207 |
+
st.write(f"Similarity: {img['similarity']:.2f}")
|
208 |
+
else:
|
209 |
+
st.warning("Please enter a search text.")
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
open_clip_torch
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
+
transformers
|
6 |
+
requests
|
7 |
+
Pillow
|
8 |
+
numpy
|
9 |
+
pandas
|
10 |
+
matplotlib
|
11 |
+
scikit-learn
|
12 |
+
scipy
|
13 |
+
opencv-python-headless
|
14 |
+
inference_sdk
|
15 |
+
ultralytics
|
16 |
+
streamlit-img-label
|
17 |
+
pascal-voc-writer
|
18 |
+
chromadb
|