JoPmt commited on
Commit
67a30fe
1 Parent(s): 457e97f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
3
  from PIL import Image
4
  import cv2
5
  import qrcode
6
- import os, random
7
  import numpy as np
8
  from transformers import pipeline
9
  import PIL.Image
@@ -82,10 +82,11 @@ models =[
82
 
83
  controlnet = accelerator.prepare(ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32))
84
  def plex(qr_code_value, text, neg_text, modil, one, two, three):
85
- generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4836923))
86
  apol=[]
87
  modal=""+modil+""
88
  pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal, controlnet=controlnet, torch_dtype=torch.float32, use_safetensors=False, safety_checker=None))
 
89
  pipe.scheduler = accelerator.prepare(DPMSolverMultistepScheduler.from_config(pipe.scheduler.config))
90
  pipe = pipe.to("cpu")
91
  negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
@@ -103,6 +104,7 @@ def plex(qr_code_value, text, neg_text, modil, one, two, three):
103
  cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
104
  cannyimage = Image.fromarray(cannyimage)
105
  images = [cannyimage]
 
106
 
107
  image = pipe(
108
  [prompt]*2,
@@ -113,7 +115,7 @@ def plex(qr_code_value, text, neg_text, modil, one, two, three):
113
  negative_prompt=[neg_prompt]*2,
114
  controlnet_conditioning_scale=three,
115
  )
116
- for i, imge in enumerate(imoge["images"]):
117
  apol.append(imge)
118
  apol.append(original)
119
  apol.append(cannyimage)
 
3
  from PIL import Image
4
  import cv2
5
  import qrcode
6
+ import os, random, gc
7
  import numpy as np
8
  from transformers import pipeline
9
  import PIL.Image
 
82
 
83
  controlnet = accelerator.prepare(ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float32))
84
  def plex(qr_code_value, text, neg_text, modil, one, two, three):
85
+ gc.collect()
86
  apol=[]
87
  modal=""+modil+""
88
  pipe = accelerator.prepare(StableDiffusionControlNetPipeline.from_pretrained(modal, controlnet=controlnet, torch_dtype=torch.float32, use_safetensors=False, safety_checker=None))
89
+ pipe.unet.to(memory_format=torch.channels_last)
90
  pipe.scheduler = accelerator.prepare(DPMSolverMultistepScheduler.from_config(pipe.scheduler.config))
91
  pipe = pipe.to("cpu")
92
  negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
 
104
  cannyimage = np.concatenate([cannyimage, cannyimage, cannyimage], axis=2)
105
  cannyimage = Image.fromarray(cannyimage)
106
  images = [cannyimage]
107
+ generator = torch.Generator(device="cpu").manual_seed(random.randint(1, 4836923))
108
 
109
  image = pipe(
110
  [prompt]*2,
 
115
  negative_prompt=[neg_prompt]*2,
116
  controlnet_conditioning_scale=three,
117
  )
118
+ for i, imge in enumerate(image["images"]):
119
  apol.append(imge)
120
  apol.append(original)
121
  apol.append(cannyimage)