File size: 4,902 Bytes
ce48c34
ce42a12
ce48c34
ce42a12
 
 
ce48c34
 
 
ce42a12
ce48c34
 
 
 
 
 
6dd7f71
ce48c34
 
 
 
 
 
ce42a12
ce48c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce42a12
ce48c34
 
ce42a12
 
 
 
 
 
 
ce48c34
ce42a12
 
ce48c34
 
ce42a12
 
ce48c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce42a12
ce48c34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from diffusers import AutoPipelineForText2Image, PNDMScheduler, StableDiffusionPipeline, EulerAncestralDiscreteScheduler
import torch
from transformers import pipeline
import gradio as gr
from PIL import Image
from diffusers.utils import load_image
import os, random, gc, re, json, time, shutil, glob
import PIL.Image
import tqdm
from accelerate import Accelerator
from huggingface_hub import HfApi, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem
HfApi=HfApi()
HF_TOKEN=os.getenv("HF_TOKEN")
HF_HUB_DISABLE_TELEMETRY=1
DO_NOT_TRACK=1
HF_HUB_ENABLE_HF_TRANSFER=0
accelerator = Accelerator(cpu=True)
InferenceClient=InferenceClient()

apol=[]

pipe = accelerator.prepare(StableDiffusionPipeline.from_single_file("https://huggingface.co/lllyasviel/fav_models/fav/DreamShaper_8_pruned.safetensors", torch_dtype=torch.float32, variant=None, use_safetensors=True, safety_checker=None))
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.unet.to(memory_format=torch.channels_last)
pipe = accelerator.prepare(pipe.to("cpu"))

def chdr(apol,prompt,modil,stips,fnamo,gaul):
    try:
        type="DrmShpr_SD"
        los=""
        tre='./tmpo/'+fnamo+'.json'
        tra='./tmpo/'+fnamo+'_0.png'
        trm='./tmpo/'+fnamo+'_1.png'
        flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"]
        flng=[itm[::-1] for itm in flng]
        ptn = r"\b" + r"\b|\b".join(flng) + r"\b"
        if re.search(ptn, prompt, re.IGNORECASE):
            print("onon buddy")
        else:
            dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type}
            with open(tre, 'w') as f:
                json.dump(dobj, f)
            HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
        dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,}
        with open(tre, 'w') as f:
            json.dump(dobj, f)
        HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
        try:
            for pgn in glob.glob('./tmpo/*.png'):
                os.remove(pgn)
            for jgn in glob.glob('./tmpo/*.json'):
                os.remove(jgn)
            del tre
            del tra
            del trm
        except:
            print("cant")
    except:
        print("failed to make obj")

def plax(gaul,req: gr.Request):
    gaul=str(req.headers)
    return gaul

def plex(prompt,neg_prompt,stips,nut,wit,het,gaul,progress=gr.Progress(track_tqdm=True)):
    gc.collect()
    apol=[]
    modil="DreamShaper_8_pruned"
    fnamo=""+str(int(time.time()))+""
    if nut == 0:
        nm = random.randint(1, 2147483616)
        while nm % 32 != 0:
            nm = random.randint(1, 2147483616)
    else:
        nm=nut
    generator = torch.Generator(device="cpu").manual_seed(nm)
    image = pipe(prompt=[prompt]*2, negative_prompt=[neg_prompt]*2, generator=generator, num_inference_steps=stips,height=het,width=wit)
    for a, imze in enumerate(image["images"]):
        apol.append(imze)
        imze.save('./tmpo/'+fnamo+'_'+str(a)+'.png', 'PNG')
    chdr(apol,prompt,modil,stips,fnamo,gaul)
    return apol

def aip(ill,api_name="/run"):
    return
def pit(ill,api_name="/predict"):
    return

with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface:
    ##iface.description="Running on cpu, very slow! by JoPmt."
    out=gr.Gallery(label="Generated Output Image", columns=1)
    inut=gr.Textbox(label="Prompt")
    gaul=gr.Textbox(visible=False)
    btn=gr.Button("GENERATE")
    with gr.Accordion("Advanced Settings", open=False):
        inet=gr.Textbox(label="Negative_prompt", value="lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature")
        inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=30,value=20)
        indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0)
        inwt=gr.Slider(label="Width",minimum=256,step=32,maximum=1024,value=768)
        inht=gr.Slider(label="Height",minimum=256,step=32,maximum=1024,value=768)
    
    btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,inet,inyt,indt,inwt,inht,gaul])

iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=20,inline=False,show_api=False)