Spaces:
Running
Running
from diffusers import AutoPipelineForText2Image, DiffusionPipeline, StableDiffusionPipeline, UniPCMultistepScheduler, EulerAncestralDiscreteScheduler | |
import torch | |
import gradio as gr | |
from PIL import Image | |
import os, random | |
import PIL.Image | |
from transformers import pipeline | |
from diffusers.utils import load_image | |
from accelerate import Accelerator | |
accelerator = Accelerator(cpu=True) | |
pipe = accelerator.prepare(StableDiffusionPipeline.from_single_file("https://huggingface.co/lllyasviel/fav_models/fav/DreamShaper_8_pruned.safetensors",torch_dtype=torch.float32, variant=None, use_safetensors=True, safety_checker=None)) | |
##pipe.scheduler = accelerator.prepare(EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)) | |
pipe.unet.to(memory_format=torch.channels_last) | |
pipe.to("cpu") | |
def plex(prompt,neg_prompt,stips,scaly,nut): | |
apol=[] | |
if nut == 0: | |
nm = random.randint(1, 2147483616) | |
while nm % 32 != 0: | |
nm = random.randint(1, 2147483616) | |
else: | |
nm=nut | |
generator = torch.Generator(device="cpu").manual_seed(nm) | |
image = pipe(prompt=prompt, negative_prompt=neg_prompt, generator=generator, num_inference_steps=stips, guidance_scale=scaly) | |
for a, imze in enumerate(image["images"]): | |
apol.append(imze) | |
return apol | |
iface = gr.Interface(fn=plex,inputs=[gr.Textbox(label="Prompt"), gr.Textbox(label="negative_prompt", value="low quality, bad quality"), gr.Slider(label="num inference steps",minimum=1,step=1,maximum=30,value=25), gr.Slider(label="guidance_scale",minimum=1,step=1,maximum=10,value=7),gr.Slider(label="manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0)],outputs=gr.Gallery(label="Generated Output Image", columns=1),description="Running on cpu, very slow! by JoPmt.") | |
iface.queue(max_size=1,api_open=False) | |
iface.launch(max_threads=1) |