File size: 4,731 Bytes
24dbf56
0859f01
428793e
0859f01
 
 
428793e
 
 
0859f01
428793e
 
 
 
 
 
24dbf56
428793e
 
99c67f4
428793e
99c67f4
298a8f7
d3455c2
298a8f7
428793e
 
 
9abd371
428793e
 
 
9abd371
428793e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abd371
428793e
 
 
 
 
 
 
 
 
 
 
 
 
 
24dbf56
 
 
 
 
 
cf9ba41
428793e
dbf39c7
 
bb0cb00
428793e
dbf39c7
0859f01
428793e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0859f01
428793e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from diffusers import AutoPipelineForText2Image, PNDMScheduler
import torch
from transformers import pipeline
import gradio as gr
from PIL import Image
from diffusers.utils import load_image
import os, random, gc, re, json, time, shutil, glob
import PIL.Image
import tqdm
from accelerate import Accelerator
from huggingface_hub import HfApi, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem
HfApi=HfApi()
HF_TOKEN=os.getenv("HF_TOKEN")
HF_HUB_DISABLE_TELEMETRY=1
DO_NOT_TRACK=1
HF_HUB_ENABLE_HF_TRANSFER=0
accelerator = Accelerator(cpu=True)
InferenceClient=InferenceClient()

apol=[]

pipe = accelerator.prepare(AutoPipelineForText2Image.from_pretrained("openskyml/overall-v1", torch_dtype=torch.float32, variant=None, use_safetensors=False, safety_checker=None))
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
pipe.unet.to(memory_format=torch.channels_last)
pipe.to("cpu")

def chdr(apol,prompt,modil,stips,fnamo,gaul):
    try:
        type="SD"
        los=""
        tre='./tmpo/'+fnamo+'.json'
        tra='./tmpo/'+fnamo+'_0.png'
        trm='./tmpo/'+fnamo+'_1.png'
        flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"]
        flng=[itm[::-1] for itm in flng]
        ptn = r"\b" + r"\b|\b".join(flng) + r"\b"
        if re.search(ptn, prompt, re.IGNORECASE):
            print("onon buddy")
        else:
            dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type}
            with open(tre, 'w') as f:
                json.dump(dobj, f)
            HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
        dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,}
        with open(tre, 'w') as f:
            json.dump(dobj, f)
        HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
        try:
            for pgn in glob.glob('./tmpo/*.png'):
                os.remove(pgn)
            for jgn in glob.glob('./tmpo/*.json'):
                os.remove(jgn)
            del tre
            del tra
            del trm
        except:
            print("cant")
    except:
        print("failed to make obj")

def plax(gaul,req: gr.Request):
    gaul=str(req.headers)
    return gaul

def plex(prompt,neg_prompt,stips,nut,wit,het,gaul,progress=gr.Progress(track_tqdm=True)):
    gc.collect()
    apol=[]
    modil="openskyml/overall-v1"
    fnamo=""+str(int(time.time()))+""
    if nut == 0:
        nm = random.randint(1, 2147483616)
        while nm % 32 != 0:
            nm = random.randint(1, 2147483616)
    else:
        nm=nut
    generator = torch.Generator(device="cpu").manual_seed(nm)
    image = pipe(prompt=[prompt]*2, negative_prompt=[neg_prompt]*2, generator=generator, num_inference_steps=stips,height=het,width=wit)
    for a, imze in enumerate(image["images"]):
        apol.append(imze)
        imze.save('./tmpo/'+fnamo+'_'+str(a)+'.png', 'PNG')
    chdr(apol,prompt,modil,stips,fnamo,gaul)
    return apol

def aip(ill,api_name="/run"):
    return
def pit(ill,api_name="/predict"):
    return

with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface:
    ##iface.description="Running on cpu, very slow! by JoPmt."
    out=gr.Gallery(label="Generated Output Image", columns=1)
    inut=gr.Textbox(label="Prompt")
    gaul=gr.Textbox(visible=False)
    btn=gr.Button("GENERATE")
    with gr.Accordion("Advanced Settings", open=False):
        inet=gr.Textbox(label="Negative_prompt", value="lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature")
        inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=30,value=20)
        indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0)
        inwt=gr.Slider(label="Width",minimum=256,step=32,maximum=1024,value=768)
        inht=gr.Slider(label="Height",minimum=256,step=32,maximum=1024,value=768)
    
    btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,inet,inyt,indt,inwt,inht,gaul])

iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=20,inline=False,show_api=False)