|
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler |
|
import torch |
|
from transformers import pipeline |
|
import gradio as gr |
|
from PIL import Image |
|
from diffusers.utils import load_image |
|
import os, random, gc, re, json, time, shutil, glob |
|
import PIL.Image |
|
import tqdm |
|
from accelerate import Accelerator |
|
from huggingface_hub import HfApi, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem |
|
HfApi=HfApi() |
|
HF_TOKEN=os.getenv("HF_TOKEN") |
|
HF_HUB_DISABLE_TELEMETRY=1 |
|
DO_NOT_TRACK=1 |
|
HF_HUB_ENABLE_HF_TRANSFER=0 |
|
accelerator = Accelerator(cpu=True) |
|
InferenceClient=InferenceClient() |
|
|
|
apol=[] |
|
|
|
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/lllyasviel/fav_models/fav/realisticStockPhoto_v10.safetensors", torch_dtype=torch.bfloat16, variant=None, use_safetensors=True, safety_checker=None) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.load_lora_weights("./", weight_name="SDXL_FILM_PHOTOGRAPHY_STYLE_BetaV0.4.safetensors", local_files_only="True") |
|
pipe.fuse_lora(fuse_unet=True,fuse_text_encoder=False) |
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe = accelerator.prepare(pipe.to("cpu")) |
|
|
|
def chdr(apol,prompt,modil,stips,fnamo,gaul): |
|
try: |
|
type="rlstcStckPht_v10" |
|
los="" |
|
tre='./tmpo/'+fnamo+'.json' |
|
tra='./tmpo/'+fnamo+'_0.png' |
|
trm='./tmpo/'+fnamo+'_1.png' |
|
flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"] |
|
flng=[itm[::-1] for itm in flng] |
|
ptn = r"\b" + r"\b|\b".join(flng) + r"\b" |
|
if re.search(ptn, prompt, re.IGNORECASE): |
|
print("onon buddy") |
|
else: |
|
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type} |
|
with open(tre, 'w') as f: |
|
json.dump(dobj, f) |
|
HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) |
|
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,} |
|
try: |
|
for pxn in glob.glob('./tmpo/*.png'): |
|
os.remove(pxn) |
|
except: |
|
print("lou") |
|
with open(tre, 'w') as f: |
|
json.dump(dobj, f) |
|
HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) |
|
try: |
|
for pgn in glob.glob('./tmpo/*.png'): |
|
os.remove(pgn) |
|
for jgn in glob.glob('./tmpo/*.json'): |
|
os.remove(jgn) |
|
del tre |
|
del tra |
|
del trm |
|
except: |
|
print("cant") |
|
except: |
|
print("failed to make obj") |
|
|
|
def plax(gaul,req: gr.Request): |
|
gaul=str(req.headers) |
|
return gaul |
|
|
|
def plex(prompt,neg_prompt,stips,nut,wit,het,gaul,progress=gr.Progress(track_tqdm=True)): |
|
gc.collect() |
|
apol=[] |
|
modil="realisticStockPhoto_v10" |
|
fnamo=""+str(int(time.time()))+"" |
|
if nut == 0: |
|
nm = random.randint(1, 2147483616) |
|
while nm % 32 != 0: |
|
nm = random.randint(1, 2147483616) |
|
else: |
|
nm=nut |
|
lora_scale=0.6 |
|
generator = torch.Generator(device="cpu").manual_seed(nm) |
|
image = pipe(prompt=[prompt]*2, negative_prompt=[neg_prompt]*2, generator=generator,denoising_end=1.0,num_inference_steps=stips, output_type="pil",cross_attention_kwargs={"scale": lora_scale},height=het,width=wit) |
|
for a, imze in enumerate(image["images"]): |
|
apol.append(imze) |
|
imze.save('./tmpo/'+fnamo+'_'+str(a)+'.png', 'PNG') |
|
chdr(apol,prompt,modil,stips,fnamo,gaul) |
|
return apol |
|
|
|
def aip(ill,api_name="/run"): |
|
return |
|
def pit(ill,api_name="/predict"): |
|
return |
|
|
|
with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface: |
|
|
|
out=gr.Gallery(label="Generated Output Image", columns=1) |
|
inut=gr.Textbox(label="Prompt") |
|
gaul=gr.Textbox(visible=False) |
|
btn=gr.Button("GENERATE") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
inet=gr.Textbox(label="Negative_prompt", value="lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature") |
|
inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=10,value=4) |
|
indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0) |
|
inwt=gr.Slider(label="Width",minimum=256,step=32,maximum=1024,value=768) |
|
inht=gr.Slider(label="Height",minimum=256,step=32,maximum=1024,value=768) |
|
|
|
btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,inet,inyt,indt,inwt,inht,gaul]) |
|
|
|
iface.queue(max_size=1,api_open=False) |
|
iface.launch(max_threads=20,inline=False,show_api=False) |