|
from diffusers import DiffusionPipeline |
|
import torch |
|
import gradio as gr |
|
from PIL import Image |
|
import os, random, gc, re, json, time, shutil |
|
import PIL.Image |
|
import tqdm |
|
from accelerate import Accelerator |
|
from huggingface_hub import HfApi, list_models, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem |
|
HfApi=HfApi() |
|
HF_TOKEN=os.getenv("HF_TOKEN") |
|
HF_HUB_DISABLE_TELEMETRY=1 |
|
DO_NOT_TRACK=1 |
|
accelerator = Accelerator(cpu=True) |
|
InferenceClient=InferenceClient() |
|
|
|
models =[] |
|
loris=[] |
|
apol=[] |
|
|
|
def hgfdm(models): |
|
models=models |
|
poi=InferenceClient.list_deployed_models() |
|
voi=poi["text-to-image"] |
|
for met in voi: |
|
pio=""+met+"" |
|
models.append(pio) |
|
return models |
|
|
|
def smdls(models): |
|
models=models |
|
mtlst=HfApi.list_models(filter="diffusers:StableDiffusionPipeline",limit=500,full=True,) |
|
if mtlst: |
|
for nea in mtlst: |
|
vmh=""+str(nea.id)+"" |
|
models.append(vmh) |
|
return models |
|
|
|
def sldls(loris): |
|
loris=loris |
|
ltlst=HfApi.list_models(filter="stable-diffusion",search="lora",limit=500,full=True,) |
|
if ltlst: |
|
for noa in ltlst: |
|
lmh=""+str(noa.id)+"" |
|
loris.append(lmh) |
|
return loris |
|
|
|
def chdr(apol,prompt,modil,los,stips,fnamo,gaul): |
|
try: |
|
type="SD" |
|
tre='./tmpo/'+fnamo+'.json' |
|
tra='./tmpo/'+fnamo+'.png' |
|
flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil",] |
|
flng=[itm[::-1] for itm in flng] |
|
ptn = r"\b" + r"\b|\b".join(flng) + r"\b" |
|
if re.search(ptn, prompt, re.IGNORECASE): |
|
print("onon buddy") |
|
else: |
|
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type} |
|
with open(tre, 'w') as f: |
|
json.dump(dobj, f) |
|
HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) |
|
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,} |
|
with open(tre, 'w') as f: |
|
json.dump(dobj, f) |
|
HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) |
|
try: |
|
del tre |
|
del tra |
|
except: |
|
print("cant") |
|
except: |
|
print("failed to umake obj") |
|
|
|
def crll(dnk): |
|
lix="" |
|
lotr=HfApi.list_files_info(repo_id=""+dnk+"",repo_type="model") |
|
for flre in list(lotr): |
|
fllr=[] |
|
gar=re.match(r'.+(\.pt|\.ckpt|\.bin|\.safetensors)$', flre.path) |
|
yir=re.search(r'[^/]+$', flre.path) |
|
if gar: |
|
fllr.append(""+str(yir.group(0))+"") |
|
lix=""+fllr[-1]+"" |
|
else: |
|
lix="" |
|
return lix |
|
|
|
def plax(gaul,req: gr.Request): |
|
gaul=str(req.headers) |
|
return gaul |
|
|
|
def plex(prompt,neg_prompt,modil,stips,scaly,nut,wei,hei,los,loca,gaul,progress=gr.Progress(track_tqdm=True)): |
|
gc.collect() |
|
adi="" |
|
ldi="" |
|
try: |
|
crda=ModelCard.load(""+modil+"") |
|
card=ModelCard.load(""+modil+"").data.to_dict().get("instance_prompt") |
|
cerd=ModelCard.load(""+modil+"").data.to_dict().get("custom_prompt") |
|
cird=ModelCard.load(""+modil+"").data.to_dict().get("lora_prompt") |
|
mtch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', crda.text, re.IGNORECASE) |
|
moch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', crda.text, re.IGNORECASE) |
|
if moch: |
|
adi+=""+str(moch.group(1))+", " |
|
else: |
|
print("no floff trigger") |
|
if mtch: |
|
adi+=""+str(mtch.group(1))+", " |
|
else: |
|
print("no fluff trigger") |
|
if card: |
|
adi+=""+str(card)+", " |
|
else: |
|
print("no instance") |
|
if cerd: |
|
adi+=""+str(cerd)+", " |
|
else: |
|
print("no custom") |
|
if cird: |
|
adi+=""+str(cird)+", " |
|
else: |
|
print("no lora") |
|
except: |
|
print("no card") |
|
try: |
|
pipe = accelerator.prepare(DiffusionPipeline.from_pretrained(""+modil+"",torch_dtype=torch.bfloat16,variant="fp16",use_safetensors=True,safety_checker=None)) or accelerator.prepare(DiffusionPipeline.from_pretrained(""+modil+"",torch_dtype=torch.float32,variant="fp32",use_safetensors=True,safety_checker=None)) or accelerator.prepare(DiffusionPipeline.from_pretrained(""+modil+"",torch_dtype=torch.bfloat16,variant="fp16",use_safetensors=False,safety_checker=None)) |
|
except: |
|
gc.collect() |
|
pipe = accelerator.prepare(DiffusionPipeline.from_pretrained(""+modil+"",torch_dtype=torch.float32,variant="fp32",use_safetensors=False,safety_checker=None)) or accelerator.prepare(DiffusionPipeline.from_pretrained(""+modil+"",torch_dtype=torch.float,variant=None,use_safetensors=True,safety_checker=None)) or accelerator.prepare(DiffusionPipeline.from_pretrained(""+modil+"",torch_dtype=torch.float,variant=None,use_safetensors=False,safety_checker=None)) |
|
|
|
if los: |
|
try: |
|
lrda=ModelCard.load(""+los+"") |
|
lard=ModelCard.load(""+los+"").data.to_dict().get("instance_prompt") |
|
lerd=ModelCard.load(""+los+"").data.to_dict().get("custom_prompt") |
|
lird=ModelCard.load(""+los+"").data.to_dict().get("stable-diffusion") |
|
ltch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*(.*?)\s*(?=to trigger)', lrda.text, re.IGNORECASE) |
|
loch=re.search(r'(?:(?<=trigger words:)|(?<=trigger:)|(?<=You could use)|(?<=You should use))\s*([^.]*)', lrda.text, re.IGNORECASE) |
|
if loch and lird: |
|
ldi+=""+str(loch.group(1))+", " |
|
else: |
|
print("no lloff trigger") |
|
if ltch and lird: |
|
ldi+=""+str(ltch.group(1))+", " |
|
else: |
|
print("no lluff trigger") |
|
if lard and lird: |
|
ldi+=""+str(lard)+", " |
|
else: |
|
print("no instance") |
|
ldi+="" |
|
if lerd and lird: |
|
ldi+=""+str(lerd)+", " |
|
else: |
|
print("no custom") |
|
ldi+="" |
|
except: |
|
print("no trigger") |
|
try: |
|
pipe.load_lora_weights(""+los+"", weight_name=""+str(crll(los))+"",) |
|
pipe.fuse_lora(fuse_unet=True,fuse_text_encoder=False) |
|
except: |
|
print("no can do") |
|
else: |
|
los="" |
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.to("cpu") |
|
gc.collect() |
|
apol=[] |
|
lora_scale=loca |
|
if nut == 0: |
|
nm = random.randint(1, 2147483616) |
|
while nm % 32 != 0: |
|
nm = random.randint(1, 2147483616) |
|
else: |
|
nm=nut |
|
generator = torch.Generator(device="cpu").manual_seed(nm) |
|
image = pipe(prompt=""+str(adi)+str(ldi)+prompt+"", negative_prompt=neg_prompt, generator=generator, num_inference_steps=stips, guidance_scale=scaly, width=wei, height=hei, cross_attention_kwargs={"scale": lora_scale}) |
|
for a, imze in enumerate(image["images"]): |
|
apol.append(imze) |
|
fnamo=""+str(int(time.time()))+"" |
|
imze.save('./tmpo/'+fnamo+'.png', 'PNG') |
|
chdr(apol,prompt,modil,los,stips,fnamo,gaul) |
|
return apol |
|
|
|
def aip(ill,api_name="/run"): |
|
return |
|
def pit(ill,api_name="/predict"): |
|
return |
|
|
|
with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface: |
|
iface.description="Running on cpu, very slow! by JoPmt." |
|
out=gr.Gallery(label="Generated Output Image", columns=1) |
|
inut=gr.Textbox(label="Prompt") |
|
gaul=gr.Textbox(visible=False) |
|
inot=gr.Dropdown(choices=smdls(models),value=random.choice(models), type="value") |
|
btn=gr.Button("GENERATE") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
inlt=gr.Dropdown(choices=sldls(loris),value=None, type="value") |
|
inet=gr.Textbox(label="Negative_prompt", value="low quality, bad quality,") |
|
inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=30,value=20) |
|
inat=gr.Slider(label="Guidance_scale",minimum=1,step=1,maximum=20,value=7) |
|
loca=gr.Slider(label="Lora scale",minimum=0.1,step=0.1,maximum=0.9,value=0.5) |
|
indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0) |
|
inwt=gr.Slider(label="Width",minimum=512,step=32,maximum=1024,value=512) |
|
inht=gr.Slider(label="Height",minimum=512,step=32,maximum=1024,value=512) |
|
|
|
btn.click(fn=plax,inputs=gaul,outputs=gaul,).then( |
|
fn=plex, outputs=[out], inputs=[inut, inet, inot, inyt, inat, indt, inwt, inht, inlt, loca, gaul]) |
|
|
|
|
|
iface.queue(max_size=1,api_open=False) |
|
iface.launch(max_threads=10,inline=False,show_api=False) |