Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,27 +5,28 @@ import PIL.Image
|
|
5 |
from diffusers.utils import load_image
|
6 |
import gradio as gr
|
7 |
from PIL import Image
|
8 |
-
import cv2
|
9 |
import os, random, gc
|
10 |
-
import numpy as np
|
11 |
from accelerate import Accelerator
|
12 |
accelerator = Accelerator(cpu=True)
|
13 |
pipe = accelerator.prepare(AmusedPipeline.from_pretrained("amused/amused-512", variant=None, torch_dtype=torch.float32, use_safetensors=True))
|
14 |
pipe.vqvae.to(torch.float32)
|
15 |
pipe.to("cpu")
|
16 |
apol=[]
|
17 |
-
def plex(prompt, guod, fifth, twice):
|
18 |
gc.collect()
|
19 |
apol=[]
|
20 |
-
|
21 |
-
|
22 |
-
nm
|
|
|
|
|
|
|
23 |
generator = torch.Generator(device="cpu").manual_seed(nm)
|
24 |
image = pipe(prompt=prompt,guidance_scale=guod,num_inference_steps=twice,num_images_per_prompt=fifth,generator=generator)
|
25 |
for a, imze in enumerate(image["images"]):
|
26 |
apol.append(imze)
|
27 |
return apol
|
28 |
|
29 |
-
iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="prompt",),gr.Slider(label="guidance scale",minimum=1,step=1,maximum=10,value=4),gr.Slider(label="num images", minimum=1, step=1, maximum=4, value=1), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=20, value=12)], outputs=gr.Gallery(label="out", columns=2),description="Running on cpu, very slow! by JoPmt.")
|
30 |
iface.queue(max_size=1,api_open=False)
|
31 |
iface.launch(max_threads=1)
|
|
|
5 |
from diffusers.utils import load_image
|
6 |
import gradio as gr
|
7 |
from PIL import Image
|
|
|
8 |
import os, random, gc
|
|
|
9 |
from accelerate import Accelerator
|
10 |
accelerator = Accelerator(cpu=True)
|
11 |
pipe = accelerator.prepare(AmusedPipeline.from_pretrained("amused/amused-512", variant=None, torch_dtype=torch.float32, use_safetensors=True))
|
12 |
pipe.vqvae.to(torch.float32)
|
13 |
pipe.to("cpu")
|
14 |
apol=[]
|
15 |
+
def plex(prompt, guod, fifth, twice, nut):
|
16 |
gc.collect()
|
17 |
apol=[]
|
18 |
+
if nut == 0:
|
19 |
+
nm = random.randint(1, 2147483616)
|
20 |
+
while nm % 32 != 0:
|
21 |
+
nm = random.randint(1, 2147483616)
|
22 |
+
else:
|
23 |
+
nm=nut
|
24 |
generator = torch.Generator(device="cpu").manual_seed(nm)
|
25 |
image = pipe(prompt=prompt,guidance_scale=guod,num_inference_steps=twice,num_images_per_prompt=fifth,generator=generator)
|
26 |
for a, imze in enumerate(image["images"]):
|
27 |
apol.append(imze)
|
28 |
return apol
|
29 |
|
30 |
+
iface = gr.Interface(fn=plex, inputs=[gr.Textbox(label="prompt",),gr.Slider(label="guidance scale",minimum=1,step=1,maximum=10,value=4),gr.Slider(label="num images", minimum=1, step=1, maximum=4, value=1), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=20, value=12), gr.Slider(label="manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0)], outputs=gr.Gallery(label="out", columns=2),description="Running on cpu, very slow! by JoPmt.")
|
31 |
iface.queue(max_size=1,api_open=False)
|
32 |
iface.launch(max_threads=1)
|