Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
from diffusers.utils import export_to_video | |
from video_diffusion.utils.scheduler_list import diff_scheduler_list, get_scheduler_list | |
stable_model_list =["damo-vilab/text-to-video-ms-1.7b","cerspense/zeroscope_v2_576w"] | |
class DamoText2VideoGenerator: | |
def __init__(self): | |
self.pipe = None | |
def load_model(self, stable_model, scheduler): | |
if self.pipe is None: | |
self.pipe = DiffusionPipeline.from_pretrained( | |
stable_model, torch_dtype=torch.float16, variant="fp16" | |
) | |
self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler) | |
self.pipe.to("cuda") | |
self.pipe.enable_xformers_memory_efficient_attention() | |
return self.pipe | |
def generate_video( | |
self, | |
prompt: str, | |
negative_prompt: str, | |
stable_model:str, | |
num_frames: int, | |
num_inference_steps: int, | |
guidance_scale: int, | |
height: int, | |
width: int, | |
scheduler: str, | |
): | |
pipe = self.load_model(stable_model=stable_model, scheduler=scheduler) | |
video = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
num_frames=int(num_frames), | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
).frames | |
video_path = export_to_video(video) | |
return video_path | |
def app(): | |
with gr.Blocks(): | |
with gr.Row(): | |
with gr.Column(): | |
dano_text2video_prompt = gr.Textbox(lines=1, placeholder="Prompt", show_label=False) | |
dano_text2video_negative_prompt = gr.Textbox( | |
lines=1, placeholder="Negative Prompt", show_label=False | |
) | |
with gr.Row(): | |
with gr.Column(): | |
dano_text2video_model_list = gr.Dropdown( | |
choices=stable_model_list, | |
label="Model List", | |
value=stable_model_list[0], | |
) | |
dano_text2video_num_inference_steps = gr.Slider( | |
minimum=1, | |
maximum=100, | |
value=50, | |
step=1, | |
label="Inference Steps", | |
) | |
dano_text2video_guidance_scale = gr.Slider( | |
minimum=1, | |
maximum=15, | |
value=7, | |
step=1, | |
label="Guidance Scale", | |
) | |
dano_text2video_num_frames = gr.Slider( | |
minimum=1, | |
maximum=50, | |
value=16, | |
step=1, | |
label="Number of Frames", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
dano_text2video_height = gr.Slider( | |
minimum=128, | |
maximum=1280, | |
value=512, | |
step=32, | |
label="Height", | |
) | |
dano_text2video_width = gr.Slider( | |
minimum=128, | |
maximum=1280, | |
value=512, | |
step=32, | |
label="Width", | |
) | |
damo_text2video_scheduler = gr.Dropdown( | |
choices=diff_scheduler_list, | |
label="Scheduler", | |
value=diff_scheduler_list[6], | |
) | |
dano_text2video_generate = gr.Button(value="Generator") | |
with gr.Column(): | |
dano_output = gr.Video(label="Output") | |
dano_text2video_generate.click( | |
fn=DamoText2VideoGenerator().generate_video, | |
inputs=[ | |
dano_text2video_prompt, | |
dano_text2video_negative_prompt, | |
dano_text2video_model_list, | |
dano_text2video_num_frames, | |
dano_text2video_num_inference_steps, | |
dano_text2video_guidance_scale, | |
dano_text2video_height, | |
dano_text2video_width, | |
damo_text2video_scheduler, | |
], | |
outputs=dano_output, | |
) | |