Spaces:
Running
Running
Upload 2 files
Browse files- app.py +22 -29
- externalmod.py +27 -0
app.py
CHANGED
@@ -1,11 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
3 |
-
import sys
|
4 |
-
from pathlib import Path
|
5 |
from all_models import models
|
6 |
-
from externalmod import gr_Interface_load
|
7 |
from prompt_extend import extend_prompt
|
8 |
-
from random import randint
|
9 |
import asyncio
|
10 |
from threading import RLock
|
11 |
lock = RLock()
|
@@ -32,53 +29,47 @@ def send_it1(inputs, model_choice, neg_input, height, width, steps, cfg, seed):
|
|
32 |
|
33 |
# https://huggingface.co/docs/api-inference/detailed_parameters
|
34 |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
35 |
-
async def infer(model_index, prompt, nprompt="", height=
|
36 |
-
from pathlib import Path
|
37 |
kwargs = {}
|
38 |
-
if height
|
39 |
-
if width
|
40 |
-
if steps
|
41 |
-
if cfg
|
42 |
-
|
43 |
-
|
44 |
-
else:
|
45 |
-
rand = randint(1, 500)
|
46 |
-
for i in range(rand):
|
47 |
-
noise += " "
|
48 |
task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn,
|
49 |
-
prompt=
|
50 |
await asyncio.sleep(0)
|
51 |
try:
|
52 |
result = await asyncio.wait_for(task, timeout=timeout)
|
53 |
except asyncio.TimeoutError as e:
|
54 |
print(e)
|
55 |
-
print(f"Task timed out: {
|
56 |
if not task.done(): task.cancel()
|
57 |
result = None
|
58 |
-
raise Exception(f"Task timed out: {
|
59 |
except Exception as e:
|
60 |
print(e)
|
61 |
if not task.done(): task.cancel()
|
62 |
result = None
|
63 |
-
raise Exception(e
|
64 |
if task.done() and result is not None and not isinstance(result, tuple):
|
65 |
with lock:
|
66 |
png_path = "image.png"
|
67 |
-
result
|
68 |
-
image = str(Path(png_path).resolve())
|
69 |
return image
|
70 |
return None
|
71 |
|
72 |
-
def gen_fn(model_index, prompt, nprompt="", height=
|
73 |
try:
|
74 |
loop = asyncio.new_event_loop()
|
75 |
result = loop.run_until_complete(infer(model_index, prompt, nprompt,
|
76 |
height, width, steps, cfg, seed, inference_timeout))
|
77 |
except (Exception, asyncio.CancelledError) as e:
|
78 |
print(e)
|
79 |
-
print(f"Task aborted: {
|
80 |
result = None
|
81 |
-
raise gr.Error(f"Task aborted: {
|
82 |
finally:
|
83 |
loop.close()
|
84 |
return result
|
@@ -127,8 +118,9 @@ with gr.Blocks(theme='John6666/YntecDark', fill_width=True, css=css) as myface:
|
|
127 |
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
|
128 |
with gr.Row():
|
129 |
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0, elem_classes=["gr-box", "gr-input"])
|
130 |
-
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value
|
131 |
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, elem_classes=["gr-box", "gr-input"])
|
|
|
132 |
run = gr.Button("Generate Image", variant="primary", elem_classes="gr-button")
|
133 |
|
134 |
with gr.Row():
|
@@ -153,8 +145,9 @@ with gr.Blocks(theme='John6666/YntecDark', fill_width=True, css=css) as myface:
|
|
153 |
concurrency_limit=None,
|
154 |
queue=False,
|
155 |
)
|
156 |
-
use_short.click(short_prompt, inputs=[input_text], outputs=magic1
|
157 |
-
see_prompts.click(text_it1, inputs=[input_text], outputs=magic1
|
|
|
158 |
|
159 |
myface.queue(default_concurrency_limit=200, max_size=200)
|
160 |
myface.launch(show_api=False, max_threads=400)
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
|
|
|
|
3 |
from all_models import models
|
4 |
+
from externalmod import gr_Interface_load, save_image, randomize_seed
|
5 |
from prompt_extend import extend_prompt
|
|
|
6 |
import asyncio
|
7 |
from threading import RLock
|
8 |
lock = RLock()
|
|
|
29 |
|
30 |
# https://huggingface.co/docs/api-inference/detailed_parameters
|
31 |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
32 |
+
async def infer(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1, timeout=inference_timeout):
|
|
|
33 |
kwargs = {}
|
34 |
+
if height > 0: kwargs["height"] = height
|
35 |
+
if width > 0: kwargs["width"] = width
|
36 |
+
if steps > 0: kwargs["num_inference_steps"] = steps
|
37 |
+
if cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
38 |
+
if seed == -1: kwargs["seed"] = randomize_seed()
|
39 |
+
else: kwargs["seed"] = seed
|
|
|
|
|
|
|
|
|
40 |
task = asyncio.create_task(asyncio.to_thread(models2[model_index].fn,
|
41 |
+
prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
|
42 |
await asyncio.sleep(0)
|
43 |
try:
|
44 |
result = await asyncio.wait_for(task, timeout=timeout)
|
45 |
except asyncio.TimeoutError as e:
|
46 |
print(e)
|
47 |
+
print(f"Task timed out: {models[model_index]}")
|
48 |
if not task.done(): task.cancel()
|
49 |
result = None
|
50 |
+
raise Exception(f"Task timed out: {models[model_index]}") from e
|
51 |
except Exception as e:
|
52 |
print(e)
|
53 |
if not task.done(): task.cancel()
|
54 |
result = None
|
55 |
+
raise Exception() from e
|
56 |
if task.done() and result is not None and not isinstance(result, tuple):
|
57 |
with lock:
|
58 |
png_path = "image.png"
|
59 |
+
image = save_image(result, png_path, models[model_index], prompt, nprompt, height, width, steps, cfg, seed)
|
|
|
60 |
return image
|
61 |
return None
|
62 |
|
63 |
+
def gen_fn(model_index, prompt, nprompt="", height=0, width=0, steps=0, cfg=0, seed=-1):
|
64 |
try:
|
65 |
loop = asyncio.new_event_loop()
|
66 |
result = loop.run_until_complete(infer(model_index, prompt, nprompt,
|
67 |
height, width, steps, cfg, seed, inference_timeout))
|
68 |
except (Exception, asyncio.CancelledError) as e:
|
69 |
print(e)
|
70 |
+
print(f"Task aborted: {models[model_index]}")
|
71 |
result = None
|
72 |
+
raise gr.Error(f"Task aborted: {models[model_index]}, Error: {e}")
|
73 |
finally:
|
74 |
loop.close()
|
75 |
return result
|
|
|
118 |
height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0, elem_classes=["gr-box", "gr-input"])
|
119 |
with gr.Row():
|
120 |
steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0, elem_classes=["gr-box", "gr-input"])
|
121 |
+
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=-1, elem_classes=["gr-box", "gr-input"])
|
122 |
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1, elem_classes=["gr-box", "gr-input"])
|
123 |
+
seed_rand = gr.Button("Randomize Seed π²", size="sm", variant="secondary")
|
124 |
run = gr.Button("Generate Image", variant="primary", elem_classes="gr-button")
|
125 |
|
126 |
with gr.Row():
|
|
|
145 |
concurrency_limit=None,
|
146 |
queue=False,
|
147 |
)
|
148 |
+
use_short.click(short_prompt, inputs=[input_text], outputs=magic1)
|
149 |
+
see_prompts.click(text_it1, inputs=[input_text], outputs=magic1)
|
150 |
+
seed_rand.click(randomize_seed, None, [seed], queue=False)
|
151 |
|
152 |
myface.queue(default_concurrency_limit=200, max_size=200)
|
153 |
myface.launch(show_api=False, max_threads=400)
|
externalmod.py
CHANGED
@@ -583,3 +583,30 @@ def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="l
|
|
583 |
models.append(model.id)
|
584 |
if len(models) == limit: break
|
585 |
return models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
583 |
models.append(model.id)
|
584 |
if len(models) == limit: break
|
585 |
return models
|
586 |
+
|
587 |
+
|
588 |
+
def save_image(image, savefile, modelname, prompt, nprompt, height=0, width=0, steps=0, cfg=0, seed=-1):
|
589 |
+
from PIL import Image, PngImagePlugin
|
590 |
+
import json
|
591 |
+
try:
|
592 |
+
metadata = {"prompt": prompt, "negative_prompt": nprompt, "Model": {"Model": modelname.split("/")[-1]}}
|
593 |
+
if steps > 0: metadata["num_inference_steps"] = steps
|
594 |
+
if cfg > 0: metadata["guidance_scale"] = cfg
|
595 |
+
if seed != -1: metadata["seed"] = seed
|
596 |
+
if width > 0 and height > 0: metadata["resolution"] = f"{width} x {height}"
|
597 |
+
metadata_str = json.dumps(metadata)
|
598 |
+
info = PngImagePlugin.PngInfo()
|
599 |
+
info.add_text("metadata", metadata_str)
|
600 |
+
image.save(savefile, "PNG", pnginfo=info)
|
601 |
+
return str(Path(savefile).resolve())
|
602 |
+
except Exception as e:
|
603 |
+
print(f"Failed to save image file: {e}")
|
604 |
+
raise Exception(f"Failed to save image file:") from e
|
605 |
+
|
606 |
+
|
607 |
+
def randomize_seed():
|
608 |
+
from random import seed, randint
|
609 |
+
MAX_SEED = 2**32-1
|
610 |
+
seed()
|
611 |
+
rseed = randint(0, MAX_SEED)
|
612 |
+
return rseed
|