Upload 12 files
Browse files- README.md +2 -1
- app.py +27 -10
- convert_repo_to_safetensors_gr.py +70 -27
- convert_repo_to_safetensors_sd_gr.py +426 -0
- convert_repo_to_safetensors_sdxl_lora_gr.py +97 -0
- local/convert_repo_to_safetensors.py +9 -8
- local/convert_repo_to_safetensors_sd.py +365 -0
- local/convert_repo_to_safetensors_sdxl_lora.py +77 -0
- local/requirements.txt +5 -1
- packages.txt +1 -0
- requirements.txt +5 -1
- utils.py +161 -0
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title: Convert
|
3 |
emoji: 🐶
|
4 |
colorFrom: yellow
|
5 |
colorTo: red
|
@@ -7,6 +7,7 @@ sdk: gradio
|
|
7 |
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Convert HF Diffusers repo to single safetensors file V2 (for SDXL / SD 1.5 / LoRA)
|
3 |
emoji: 🐶
|
4 |
colorFrom: yellow
|
5 |
colorTo: red
|
|
|
7 |
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,30 +1,47 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
from convert_repo_to_safetensors_gr import convert_repo_to_safetensors_multi
|
4 |
os.environ['HF_OUTPUT_REPO'] = 'John6666/safetensors_converting_test'
|
5 |
|
6 |
-
css = """
|
|
|
|
|
|
|
7 |
|
8 |
-
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
|
9 |
-
gr.Markdown(
|
10 |
-
f"""
|
11 |
-
- [A CLI version of this tool is available here](https://huggingface.co/spaces/John6666/convert_repo_to_safetensors/tree/main/local).
|
12 |
-
""")
|
13 |
with gr.Column():
|
14 |
repo_id = gr.Textbox(label="Repo ID", placeholder="author/model", value="", lines=1)
|
15 |
-
is_half = gr.Checkbox(label="Half precision", value=True)
|
16 |
is_upload = gr.Checkbox(label="Upload safetensors to HF Repo", info="Fast download, but files will be public.", value=False)
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
run_button = gr.Button(value="Convert")
|
19 |
st_file = gr.Files(label="Output", interactive=False)
|
20 |
st_md = gr.Markdown()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
gr.on(
|
23 |
triggers=[repo_id.submit, run_button.click],
|
24 |
fn=convert_repo_to_safetensors_multi,
|
25 |
-
inputs=[repo_id, st_file, is_upload,
|
26 |
outputs=[st_file, uploaded_urls, st_md],
|
27 |
)
|
|
|
28 |
|
29 |
demo.queue()
|
30 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
from convert_repo_to_safetensors_gr import convert_repo_to_safetensors_multi, clear_safetensors
|
4 |
os.environ['HF_OUTPUT_REPO'] = 'John6666/safetensors_converting_test'
|
5 |
|
6 |
+
css = """
|
7 |
+
.title { text-align: center; !important; }
|
8 |
+
.footer { text-align: center; !important; }
|
9 |
+
"""
|
10 |
|
11 |
+
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css, delete_cache=(60, 3600)) as demo:
|
12 |
+
gr.Markdown("# HF Diffusers repo to WebUI/ComfyUI single safetensors file converter (for SDXL / SD 1.5 / LoRA)", elem_classes="title")
|
|
|
|
|
|
|
13 |
with gr.Column():
|
14 |
repo_id = gr.Textbox(label="Repo ID", placeholder="author/model", value="", lines=1)
|
|
|
15 |
is_upload = gr.Checkbox(label="Upload safetensors to HF Repo", info="Fast download, but files will be public.", value=False)
|
16 |
+
with gr.Accordion("Advanced", open=False):
|
17 |
+
dtype = gr.Radio(label="Output data type", choices=["fp16", "fp32", "bf16", "fp8", "default"], value="fp16")
|
18 |
+
with gr.Accordion("Upload to your repo", open=True):
|
19 |
+
with gr.Row():
|
20 |
+
hf_token = gr.Textbox(label="Your HF write token", placeholder="hf_...", value="", max_lines=1)
|
21 |
+
gr.Markdown("Your token is available at [hf.co/settings/tokens](https://huggingface.co/settings/tokens).")
|
22 |
+
with gr.Row():
|
23 |
+
newrepo_id = gr.Textbox(label="Upload repo ID", placeholder="yourid/newrepo", value="", max_lines=1)
|
24 |
+
newrepo_type = gr.Radio(label="Upload repo type", choices=["model", "dataset"], value="model")
|
25 |
+
is_private = gr.Checkbox(label="Create private repo", value=True)
|
26 |
+
uploaded_urls = gr.CheckboxGroup(visible=False, choices=[], value=None) # hidden
|
27 |
run_button = gr.Button(value="Convert")
|
28 |
st_file = gr.Files(label="Output", interactive=False)
|
29 |
st_md = gr.Markdown()
|
30 |
+
delete_button = gr.Button(value="Delete Safetensors")
|
31 |
+
gr.DuplicateButton(value="Duplicate Space")
|
32 |
+
gr.Markdown(
|
33 |
+
f"""
|
34 |
+
- Thanks to [xi0v](https://huggingface.co/xi0v)
|
35 |
+
- [A CLI version of this tool is available here](https://huggingface.co/spaces/John6666/convert_repo_to_safetensors/tree/main/local).
|
36 |
+
""", elem_classes="footer")
|
37 |
|
38 |
gr.on(
|
39 |
triggers=[repo_id.submit, run_button.click],
|
40 |
fn=convert_repo_to_safetensors_multi,
|
41 |
+
inputs=[repo_id, hf_token, st_file, uploaded_urls, dtype, is_upload, newrepo_id, newrepo_type, is_private],
|
42 |
outputs=[st_file, uploaded_urls, st_md],
|
43 |
)
|
44 |
+
delete_button.click(clear_safetensors, None, [st_file], queue=False, show_api=False)
|
45 |
|
46 |
demo.queue()
|
47 |
demo.launch()
|
convert_repo_to_safetensors_gr.py
CHANGED
@@ -10,6 +10,15 @@ import torch
|
|
10 |
from safetensors.torch import load_file, save_file
|
11 |
import gradio as gr
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# =================#
|
14 |
# UNet Conversion #
|
15 |
# =================#
|
@@ -269,8 +278,7 @@ def convert_openai_text_enc_state_dict(text_enc_dict):
|
|
269 |
return text_enc_dict
|
270 |
|
271 |
|
272 |
-
def convert_diffusers_to_safetensors(model_path, checkpoint_path,
|
273 |
-
progress(0, desc="Start converting...")
|
274 |
# Path for safetensors
|
275 |
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
276 |
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
@@ -326,74 +334,109 @@ def convert_diffusers_to_safetensors(model_path, checkpoint_path, half = True, p
|
|
326 |
# Put together new checkpoint
|
327 |
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict, **text_enc_2_dict}
|
328 |
|
329 |
-
if half
|
330 |
-
|
|
|
|
|
331 |
|
332 |
save_file(state_dict, checkpoint_path)
|
333 |
-
progress(1, desc="Converted.")
|
334 |
|
335 |
|
|
|
336 |
def download_repo(repo_id, dir_path, progress=gr.Progress(track_tqdm=True)):
|
337 |
-
|
338 |
try:
|
339 |
-
snapshot_download(repo_id=repo_id, local_dir=dir_path
|
|
|
340 |
except Exception as e:
|
341 |
print(f"Error: Failed to download {repo_id}. {e}")
|
|
|
342 |
return
|
343 |
|
344 |
|
345 |
-
def upload_safetensors_to_repo(filename, progress=gr.Progress(track_tqdm=True)):
|
346 |
-
from huggingface_hub import HfApi, hf_hub_url
|
347 |
-
import os
|
348 |
-
from pathlib import Path
|
349 |
output_filename = Path(filename).name
|
350 |
-
hf_token =
|
351 |
-
|
352 |
-
api = HfApi()
|
353 |
try:
|
|
|
354 |
progress(0, desc="Start uploading...")
|
355 |
-
api.upload_file(path_or_fileobj=filename, path_in_repo=output_filename,
|
356 |
progress(1, desc="Uploaded.")
|
357 |
-
url
|
358 |
except Exception as e:
|
359 |
-
print(f"Error: Failed to upload to {repo_id}. ")
|
|
|
360 |
return None
|
361 |
return url
|
362 |
|
363 |
|
364 |
-
def convert_repo_to_safetensors(repo_id,
|
365 |
download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
|
366 |
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
|
|
|
367 |
download_repo(repo_id, download_dir)
|
368 |
-
|
|
|
|
|
|
|
369 |
return output_filename
|
370 |
|
371 |
|
372 |
-
def convert_repo_to_safetensors_multi(repo_id,
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
if not urls: urls = []
|
|
|
375 |
url = ""
|
376 |
if is_upload:
|
377 |
-
url = upload_safetensors_to_repo(file,
|
378 |
-
if url:
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
md = ""
|
380 |
for u in urls:
|
381 |
md += f"[Download {str(u).split('/')[-1]}]({str(u)})<br>"
|
382 |
-
|
383 |
-
files.append(file)
|
384 |
return gr.update(value=files), gr.update(value=urls, choices=urls), gr.update(value=md)
|
385 |
|
386 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
if __name__ == "__main__":
|
388 |
parser = argparse.ArgumentParser()
|
389 |
|
390 |
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
391 |
-
parser.add_argument("--
|
392 |
|
393 |
args = parser.parse_args()
|
394 |
assert args.repo_id is not None, "Must provide a Repo ID!"
|
395 |
|
396 |
-
convert_repo_to_safetensors(args.repo_id, args.
|
397 |
|
398 |
|
399 |
# Usage: python convert_repo_to_safetensors.py --repo_id GraydientPlatformAPI/goodfit-pony41-xl
|
|
|
10 |
from safetensors.torch import load_file, save_file
|
11 |
import gradio as gr
|
12 |
|
13 |
+
from huggingface_hub import HfApi, HfFolder, hf_hub_url, snapshot_download
|
14 |
+
import os
|
15 |
+
from pathlib import Path
|
16 |
+
import shutil
|
17 |
+
import gc
|
18 |
+
from utils import get_token, set_token, is_repo_exists, get_model_type
|
19 |
+
from convert_repo_to_safetensors_sd_gr import convert_repo_to_safetensors as convert_repo_to_safetensors_sd
|
20 |
+
from convert_repo_to_safetensors_sdxl_lora_gr import convert_repo_to_safetensors_sdxl_lora
|
21 |
+
|
22 |
# =================#
|
23 |
# UNet Conversion #
|
24 |
# =================#
|
|
|
278 |
return text_enc_dict
|
279 |
|
280 |
|
281 |
+
def convert_diffusers_to_safetensors(model_path, checkpoint_path, dtype="fp16", progress=gr.Progress(track_tqdm=True)):
|
|
|
282 |
# Path for safetensors
|
283 |
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
284 |
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
|
|
334 |
# Put together new checkpoint
|
335 |
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict, **text_enc_2_dict}
|
336 |
|
337 |
+
if dtype == "fp16": state_dict = {k: v.half() for k, v in state_dict.items()}
|
338 |
+
elif dtype == "fp32": state_dict = {k: v.to(torch.float32) for k, v in state_dict.items()}
|
339 |
+
elif dtype == "bf16": state_dict = {k: v.to(torch.bfloat16) for k, v in state_dict.items()}
|
340 |
+
elif dtype == "fp8": state_dict = {k: v.to(torch.float8_e4m3fn) for k, v in state_dict.items()}
|
341 |
|
342 |
save_file(state_dict, checkpoint_path)
|
|
|
343 |
|
344 |
|
345 |
+
# https://huggingface.co/docs/huggingface_hub/v0.25.1/en/package_reference/file_download#huggingface_hub.snapshot_download
|
346 |
def download_repo(repo_id, dir_path, progress=gr.Progress(track_tqdm=True)):
|
347 |
+
hf_token = get_token()
|
348 |
try:
|
349 |
+
snapshot_download(repo_id=repo_id, local_dir=dir_path, token=hf_token, allow_patterns=["*.safetensors", "*.bin"],
|
350 |
+
ignore_patterns=["*.fp16.*", "/*.safetensors", "/*.bin"], force_download=True)
|
351 |
except Exception as e:
|
352 |
print(f"Error: Failed to download {repo_id}. {e}")
|
353 |
+
gr.Warning(f"Error: Failed to download {repo_id}. {e}")
|
354 |
return
|
355 |
|
356 |
|
357 |
+
def upload_safetensors_to_repo(filename, repo_id, repo_type, is_private, progress=gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
358 |
output_filename = Path(filename).name
|
359 |
+
hf_token = get_token()
|
360 |
+
api = HfApi(token=hf_token)
|
|
|
361 |
try:
|
362 |
+
if not is_repo_exists(repo_id, repo_type): api.create_repo(repo_id=repo_id, repo_type=repo_type, token=hf_token, private=is_private)
|
363 |
progress(0, desc="Start uploading...")
|
364 |
+
api.upload_file(path_or_fileobj=filename, path_in_repo=output_filename, repo_type=repo_type, revision="main", token=hf_token, repo_id=repo_id)
|
365 |
progress(1, desc="Uploaded.")
|
366 |
+
url = hf_hub_url(repo_id=repo_id, repo_type=repo_type, filename=output_filename)
|
367 |
except Exception as e:
|
368 |
+
print(f"Error: Failed to upload to {repo_id}. {e}")
|
369 |
+
gr.Warning(f"Error: Failed to upload to {repo_id}. {e}")
|
370 |
return None
|
371 |
return url
|
372 |
|
373 |
|
374 |
+
def convert_repo_to_safetensors(repo_id, dtype="fp16", progress=gr.Progress(track_tqdm=True)):
|
375 |
download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
|
376 |
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
|
377 |
+
progress(0, desc="Start downloading...")
|
378 |
download_repo(repo_id, download_dir)
|
379 |
+
progress(0, desc="Start converting...")
|
380 |
+
convert_diffusers_to_safetensors(download_dir, output_filename, dtype)
|
381 |
+
progress(1, desc="Converted.")
|
382 |
+
shutil.rmtree(download_dir)
|
383 |
return output_filename
|
384 |
|
385 |
|
386 |
+
def convert_repo_to_safetensors_multi(repo_id, hf_token, files, urls, dtype="fp16", is_upload=False,
|
387 |
+
newrepo_id="", repo_type="model", is_private=True, progress=gr.Progress(track_tqdm=True)):
|
388 |
+
if hf_token: set_token(hf_token)
|
389 |
+
else: set_token(os.environ.get("HF_TOKEN"))
|
390 |
+
if is_upload and newrepo_id and not hf_token: raise gr.Error("HF write token is required for this process.")
|
391 |
+
if not newrepo_id: newrepo_id = os.environ.get("HF_OUTPUT_REPO")
|
392 |
+
model_type = get_model_type(repo_id)
|
393 |
+
if model_type == "SDXL":
|
394 |
+
gr.Info(f"Converting {model_type} model.")
|
395 |
+
file = convert_repo_to_safetensors(repo_id, dtype)
|
396 |
+
elif model_type == "SD 1.5":
|
397 |
+
gr.Info(f"Converting {model_type} model.")
|
398 |
+
file = convert_repo_to_safetensors_sd(repo_id, dtype)
|
399 |
+
elif model_type == "LoRA":
|
400 |
+
gr.Info(f"Converting {model_type}.")
|
401 |
+
file = convert_repo_to_safetensors_sdxl_lora(repo_id)
|
402 |
+
else: raise gr.Error(f"Unsupported model type: {model_type}")
|
403 |
if not urls: urls = []
|
404 |
+
if not files: files = []
|
405 |
url = ""
|
406 |
if is_upload:
|
407 |
+
url = upload_safetensors_to_repo(file, newrepo_id, repo_type, is_private)
|
408 |
+
if url:
|
409 |
+
urls.append(url)
|
410 |
+
Path(file).unlink()
|
411 |
+
else: files.append(file)
|
412 |
+
else:
|
413 |
+
files.append(file)
|
414 |
+
progress(1, desc="Processing...")
|
415 |
md = ""
|
416 |
for u in urls:
|
417 |
md += f"[Download {str(u).split('/')[-1]}]({str(u)})<br>"
|
418 |
+
gc.collect()
|
|
|
419 |
return gr.update(value=files), gr.update(value=urls, choices=urls), gr.update(value=md)
|
420 |
|
421 |
|
422 |
+
def clear_safetensors():
|
423 |
+
for p in Path('.').glob('*.safetensors'):
|
424 |
+
p.unlink()
|
425 |
+
print("Deleted.")
|
426 |
+
gc.collect()
|
427 |
+
return gr.update(value=[])
|
428 |
+
|
429 |
+
|
430 |
if __name__ == "__main__":
|
431 |
parser = argparse.ArgumentParser()
|
432 |
|
433 |
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
434 |
+
parser.add_argument("--dtype", default="fp16", type=str, choices=["fp16", "fp32", "bf16", "fp8", "default"], help='Output data type. (Default: "fp16")')
|
435 |
|
436 |
args = parser.parse_args()
|
437 |
assert args.repo_id is not None, "Must provide a Repo ID!"
|
438 |
|
439 |
+
convert_repo_to_safetensors(args.repo_id, args.dtype)
|
440 |
|
441 |
|
442 |
# Usage: python convert_repo_to_safetensors.py --repo_id GraydientPlatformAPI/goodfit-pony41-xl
|
convert_repo_to_safetensors_sd_gr.py
ADDED
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
2 |
+
# *Only* converts the UNet, VAE, and Text Encoder.
|
3 |
+
# Does not convert optimizer state or any other thing.
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import os.path as osp
|
7 |
+
import re
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from safetensors.torch import load_file, save_file
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
from huggingface_hub import HfApi, HfFolder, hf_hub_url, snapshot_download
|
14 |
+
import os
|
15 |
+
from pathlib import Path
|
16 |
+
import shutil
|
17 |
+
import gc
|
18 |
+
from utils import get_token, set_token, is_repo_exists
|
19 |
+
|
20 |
+
# =================#
|
21 |
+
# UNet Conversion #
|
22 |
+
# =================#
|
23 |
+
|
24 |
+
unet_conversion_map = [
|
25 |
+
# (stable-diffusion, HF Diffusers)
|
26 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
27 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
28 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
29 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
30 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
31 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
32 |
+
("out.0.weight", "conv_norm_out.weight"),
|
33 |
+
("out.0.bias", "conv_norm_out.bias"),
|
34 |
+
("out.2.weight", "conv_out.weight"),
|
35 |
+
("out.2.bias", "conv_out.bias"),
|
36 |
+
]
|
37 |
+
|
38 |
+
unet_conversion_map_resnet = [
|
39 |
+
# (stable-diffusion, HF Diffusers)
|
40 |
+
("in_layers.0", "norm1"),
|
41 |
+
("in_layers.2", "conv1"),
|
42 |
+
("out_layers.0", "norm2"),
|
43 |
+
("out_layers.3", "conv2"),
|
44 |
+
("emb_layers.1", "time_emb_proj"),
|
45 |
+
("skip_connection", "conv_shortcut"),
|
46 |
+
]
|
47 |
+
|
48 |
+
unet_conversion_map_layer = []
|
49 |
+
# hardcoded number of downblocks and resnets/attentions...
|
50 |
+
# would need smarter logic for other networks.
|
51 |
+
for i in range(4):
|
52 |
+
# loop over downblocks/upblocks
|
53 |
+
|
54 |
+
for j in range(2):
|
55 |
+
# loop over resnets/attentions for downblocks
|
56 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
57 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
58 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
59 |
+
|
60 |
+
if i < 3:
|
61 |
+
# no attention layers in down_blocks.3
|
62 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
63 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
64 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
65 |
+
|
66 |
+
for j in range(3):
|
67 |
+
# loop over resnets/attentions for upblocks
|
68 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
69 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
70 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
71 |
+
|
72 |
+
if i > 0:
|
73 |
+
# no attention layers in up_blocks.0
|
74 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
75 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
76 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
77 |
+
|
78 |
+
if i < 3:
|
79 |
+
# no downsample in down_blocks.3
|
80 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
81 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
82 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
83 |
+
|
84 |
+
# no upsample in up_blocks.3
|
85 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
86 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
87 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
88 |
+
|
89 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
90 |
+
sd_mid_atn_prefix = "middle_block.1."
|
91 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
92 |
+
|
93 |
+
for j in range(2):
|
94 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
95 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
96 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
97 |
+
|
98 |
+
|
99 |
+
def convert_unet_state_dict(unet_state_dict):
|
100 |
+
# buyer beware: this is a *brittle* function,
|
101 |
+
# and correct output requires that all of these pieces interact in
|
102 |
+
# the exact order in which I have arranged them.
|
103 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
104 |
+
for sd_name, hf_name in unet_conversion_map:
|
105 |
+
mapping[hf_name] = sd_name
|
106 |
+
for k, v in mapping.items():
|
107 |
+
if "resnets" in k:
|
108 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
109 |
+
v = v.replace(hf_part, sd_part)
|
110 |
+
mapping[k] = v
|
111 |
+
for k, v in mapping.items():
|
112 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
113 |
+
v = v.replace(hf_part, sd_part)
|
114 |
+
mapping[k] = v
|
115 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
116 |
+
return new_state_dict
|
117 |
+
|
118 |
+
|
119 |
+
# ================#
|
120 |
+
# VAE Conversion #
|
121 |
+
# ================#
|
122 |
+
|
123 |
+
vae_conversion_map = [
|
124 |
+
# (stable-diffusion, HF Diffusers)
|
125 |
+
("nin_shortcut", "conv_shortcut"),
|
126 |
+
("norm_out", "conv_norm_out"),
|
127 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
128 |
+
]
|
129 |
+
|
130 |
+
for i in range(4):
|
131 |
+
# down_blocks have two resnets
|
132 |
+
for j in range(2):
|
133 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
134 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
135 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
136 |
+
|
137 |
+
if i < 3:
|
138 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
139 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
140 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
141 |
+
|
142 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
143 |
+
sd_upsample_prefix = f"up.{3-i}.upsample."
|
144 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
145 |
+
|
146 |
+
# up_blocks have three resnets
|
147 |
+
# also, up blocks in hf are numbered in reverse from sd
|
148 |
+
for j in range(3):
|
149 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
150 |
+
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
151 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
152 |
+
|
153 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
154 |
+
for i in range(2):
|
155 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
156 |
+
sd_mid_res_prefix = f"mid.block_{i+1}."
|
157 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
158 |
+
|
159 |
+
|
160 |
+
vae_conversion_map_attn = [
|
161 |
+
# (stable-diffusion, HF Diffusers)
|
162 |
+
("norm.", "group_norm."),
|
163 |
+
("q.", "query."),
|
164 |
+
("k.", "key."),
|
165 |
+
("v.", "value."),
|
166 |
+
("proj_out.", "proj_attn."),
|
167 |
+
]
|
168 |
+
|
169 |
+
# This is probably not the most ideal solution, but it does work.
|
170 |
+
vae_extra_conversion_map = [
|
171 |
+
("to_q", "q"),
|
172 |
+
("to_k", "k"),
|
173 |
+
("to_v", "v"),
|
174 |
+
("to_out.0", "proj_out"),
|
175 |
+
]
|
176 |
+
|
177 |
+
|
178 |
+
def reshape_weight_for_sd(w):
|
179 |
+
# convert HF linear weights to SD conv2d weights
|
180 |
+
if not w.ndim == 1:
|
181 |
+
return w.reshape(*w.shape, 1, 1)
|
182 |
+
else:
|
183 |
+
return w
|
184 |
+
|
185 |
+
|
186 |
+
def convert_vae_state_dict(vae_state_dict):
|
187 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
188 |
+
for k, v in mapping.items():
|
189 |
+
for sd_part, hf_part in vae_conversion_map:
|
190 |
+
v = v.replace(hf_part, sd_part)
|
191 |
+
mapping[k] = v
|
192 |
+
for k, v in mapping.items():
|
193 |
+
if "attentions" in k:
|
194 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
195 |
+
v = v.replace(hf_part, sd_part)
|
196 |
+
mapping[k] = v
|
197 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
198 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
199 |
+
keys_to_rename = {}
|
200 |
+
for k, v in new_state_dict.items():
|
201 |
+
for weight_name in weights_to_convert:
|
202 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
203 |
+
print(f"Reshaping {k} for SD format")
|
204 |
+
new_state_dict[k] = reshape_weight_for_sd(v)
|
205 |
+
for weight_name, real_weight_name in vae_extra_conversion_map:
|
206 |
+
if f"mid.attn_1.{weight_name}.weight" in k or f"mid.attn_1.{weight_name}.bias" in k:
|
207 |
+
keys_to_rename[k] = k.replace(weight_name, real_weight_name)
|
208 |
+
for k, v in keys_to_rename.items():
|
209 |
+
if k in new_state_dict:
|
210 |
+
print(f"Renaming {k} to {v}")
|
211 |
+
new_state_dict[v] = reshape_weight_for_sd(new_state_dict[k])
|
212 |
+
del new_state_dict[k]
|
213 |
+
return new_state_dict
|
214 |
+
|
215 |
+
|
216 |
+
# =========================#
|
217 |
+
# Text Encoder Conversion #
|
218 |
+
# =========================#
|
219 |
+
|
220 |
+
|
221 |
+
textenc_conversion_lst = [
|
222 |
+
# (stable-diffusion, HF Diffusers)
|
223 |
+
("resblocks.", "text_model.encoder.layers."),
|
224 |
+
("ln_1", "layer_norm1"),
|
225 |
+
("ln_2", "layer_norm2"),
|
226 |
+
(".c_fc.", ".fc1."),
|
227 |
+
(".c_proj.", ".fc2."),
|
228 |
+
(".attn", ".self_attn"),
|
229 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
230 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
231 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
232 |
+
]
|
233 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
234 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
235 |
+
|
236 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
237 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
238 |
+
|
239 |
+
|
240 |
+
def convert_text_enc_state_dict_v20(text_enc_dict):
|
241 |
+
new_state_dict = {}
|
242 |
+
capture_qkv_weight = {}
|
243 |
+
capture_qkv_bias = {}
|
244 |
+
for k, v in text_enc_dict.items():
|
245 |
+
if (
|
246 |
+
k.endswith(".self_attn.q_proj.weight")
|
247 |
+
or k.endswith(".self_attn.k_proj.weight")
|
248 |
+
or k.endswith(".self_attn.v_proj.weight")
|
249 |
+
):
|
250 |
+
k_pre = k[: -len(".q_proj.weight")]
|
251 |
+
k_code = k[-len("q_proj.weight")]
|
252 |
+
if k_pre not in capture_qkv_weight:
|
253 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
254 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
255 |
+
continue
|
256 |
+
|
257 |
+
if (
|
258 |
+
k.endswith(".self_attn.q_proj.bias")
|
259 |
+
or k.endswith(".self_attn.k_proj.bias")
|
260 |
+
or k.endswith(".self_attn.v_proj.bias")
|
261 |
+
):
|
262 |
+
k_pre = k[: -len(".q_proj.bias")]
|
263 |
+
k_code = k[-len("q_proj.bias")]
|
264 |
+
if k_pre not in capture_qkv_bias:
|
265 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
266 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
267 |
+
continue
|
268 |
+
|
269 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
270 |
+
new_state_dict[relabelled_key] = v
|
271 |
+
|
272 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
273 |
+
if None in tensors:
|
274 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
275 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
276 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
277 |
+
|
278 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
279 |
+
if None in tensors:
|
280 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
281 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
282 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
283 |
+
|
284 |
+
return new_state_dict
|
285 |
+
|
286 |
+
|
287 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
288 |
+
return text_enc_dict
|
289 |
+
|
290 |
+
|
291 |
+
def convert_diffusers_to_safetensors(model_path, checkpoint_path, dtype="fp16", progress=gr.Progress(track_tqdm=True)):
|
292 |
+
# Path for safetensors
|
293 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
294 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
295 |
+
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
296 |
+
|
297 |
+
# Load models from safetensors if it exists, if it doesn't pytorch
|
298 |
+
if osp.exists(unet_path):
|
299 |
+
unet_state_dict = load_file(unet_path, device="cpu")
|
300 |
+
else:
|
301 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
302 |
+
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
303 |
+
|
304 |
+
if osp.exists(vae_path):
|
305 |
+
vae_state_dict = load_file(vae_path, device="cpu")
|
306 |
+
else:
|
307 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
308 |
+
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
309 |
+
|
310 |
+
if osp.exists(text_enc_path):
|
311 |
+
text_enc_dict = load_file(text_enc_path, device="cpu")
|
312 |
+
else:
|
313 |
+
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
314 |
+
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
315 |
+
|
316 |
+
# Convert the UNet model
|
317 |
+
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
318 |
+
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
319 |
+
|
320 |
+
# Convert the VAE model
|
321 |
+
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
322 |
+
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
323 |
+
|
324 |
+
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
325 |
+
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
326 |
+
|
327 |
+
if is_v20_model:
|
328 |
+
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
329 |
+
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
330 |
+
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
|
331 |
+
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
332 |
+
else:
|
333 |
+
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
334 |
+
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
335 |
+
|
336 |
+
# Put together new checkpoint
|
337 |
+
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
338 |
+
|
339 |
+
if dtype == "fp16": state_dict = {k: v.half() for k, v in state_dict.items()}
|
340 |
+
elif dtype == "fp32": state_dict = {k: v.to(torch.float32) for k, v in state_dict.items()}
|
341 |
+
elif dtype == "bf16": state_dict = {k: v.to(torch.bfloat16) for k, v in state_dict.items()}
|
342 |
+
elif dtype == "fp8": state_dict = {k: v.to(torch.float8_e4m3fn) for k, v in state_dict.items()}
|
343 |
+
|
344 |
+
save_file(state_dict, checkpoint_path)
|
345 |
+
|
346 |
+
|
347 |
+
# https://huggingface.co/docs/huggingface_hub/v0.25.1/en/package_reference/file_download#huggingface_hub.snapshot_download
|
348 |
+
def download_repo(repo_id, dir_path):
|
349 |
+
hf_token = get_token()
|
350 |
+
try:
|
351 |
+
snapshot_download(repo_id=repo_id, local_dir=dir_path, token=hf_token, allow_patterns=["*.safetensors", "*.bin"],
|
352 |
+
ignore_patterns=["*.fp16.*", "/*.safetensors", "/*.bin"])
|
353 |
+
except Exception as e:
|
354 |
+
print(f"Error: Failed to download {repo_id}. {e}")
|
355 |
+
gr.Warning(f"Error: Failed to download {repo_id}. {e}")
|
356 |
+
return
|
357 |
+
|
358 |
+
|
359 |
+
def upload_safetensors_to_repo(filename, repo_id, repo_type, is_private, progress=gr.Progress(track_tqdm=True)):
|
360 |
+
output_filename = Path(filename).name
|
361 |
+
hf_token = get_token()
|
362 |
+
api = HfApi(token=hf_token)
|
363 |
+
try:
|
364 |
+
if not is_repo_exists(repo_id, repo_type): api.create_repo(repo_id=repo_id, repo_type=repo_type, token=hf_token, private=is_private)
|
365 |
+
progress(0, desc="Start uploading...")
|
366 |
+
api.upload_file(path_or_fileobj=filename, path_in_repo=output_filename, repo_type=repo_type, revision="main", token=hf_token, repo_id=repo_id)
|
367 |
+
progress(1, desc="Uploaded.")
|
368 |
+
url = hf_hub_url(repo_id=repo_id, repo_type=repo_type, filename=output_filename)
|
369 |
+
except Exception as e:
|
370 |
+
print(f"Error: Failed to upload to {repo_id}. {e}")
|
371 |
+
gr.Warning(f"Error: Failed to upload to {repo_id}. {e}")
|
372 |
+
return None
|
373 |
+
return url
|
374 |
+
|
375 |
+
|
376 |
+
def convert_repo_to_safetensors(repo_id, dtype="fp16", progress=gr.Progress(track_tqdm=True)):
|
377 |
+
download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
|
378 |
+
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
|
379 |
+
progress(0, desc="Start downloading...")
|
380 |
+
download_repo(repo_id, download_dir)
|
381 |
+
progress(0, desc="Start converting...")
|
382 |
+
convert_diffusers_to_safetensors(download_dir, output_filename, dtype)
|
383 |
+
progress(1, desc="Converted.")
|
384 |
+
shutil.rmtree(download_dir)
|
385 |
+
return output_filename
|
386 |
+
|
387 |
+
|
388 |
+
def convert_repo_to_safetensors_multi_sd(repo_id, hf_token, files, urls, dtype="fp16", is_upload=False,
|
389 |
+
newrepo_id="", repo_type="model", is_private=True, progress=gr.Progress(track_tqdm=True)):
|
390 |
+
if hf_token: set_token(hf_token)
|
391 |
+
else: set_token(os.environ.get("HF_TOKEN"))
|
392 |
+
if is_upload and newrepo_id and not hf_token: raise gr.Error("HF write token is required for this process.")
|
393 |
+
if not newrepo_id: newrepo_id = os.environ.get("HF_OUTPUT_REPO")
|
394 |
+
file = convert_repo_to_safetensors(repo_id, dtype)
|
395 |
+
if not urls: urls = []
|
396 |
+
url = ""
|
397 |
+
if is_upload:
|
398 |
+
url = upload_safetensors_to_repo(file, newrepo_id, repo_type, is_private)
|
399 |
+
if url: urls.append(url)
|
400 |
+
progress(1, desc="Processing...")
|
401 |
+
md = ""
|
402 |
+
for u in urls:
|
403 |
+
md += f"[Download {str(u).split('/')[-1]}]({str(u)})<br>"
|
404 |
+
if not files: files = []
|
405 |
+
files.append(file)
|
406 |
+
return gr.update(value=files), gr.update(value=urls, choices=urls), gr.update(value=md)
|
407 |
+
|
408 |
+
|
409 |
+
def clear_safetensors():
|
410 |
+
for p in Path('.').glob('*.safetensors'):
|
411 |
+
p.unlink()
|
412 |
+
print("Deleted.")
|
413 |
+
gc.collect()
|
414 |
+
return gr.update(value=[])
|
415 |
+
|
416 |
+
|
417 |
+
if __name__ == "__main__":
|
418 |
+
parser = argparse.ArgumentParser()
|
419 |
+
|
420 |
+
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
421 |
+
parser.add_argument("--dtype", default="fp16", type=str, choices=["fp16", "fp32", "bf16", "fp8", "default"], help='Output data type. (Default: "fp16")')
|
422 |
+
|
423 |
+
args = parser.parse_args()
|
424 |
+
assert args.repo_id is not None, "Must provide a Repo ID!"
|
425 |
+
|
426 |
+
convert_repo_to_safetensors(args.repo_id, args.dtype)
|
convert_repo_to_safetensors_sdxl_lora_gr.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Script for converting a Hugging Face Diffusers trained SDXL LoRAs to Kohya format
|
2 |
+
# This means that you can input your diffusers-trained LoRAs and
|
3 |
+
# Get the output to work with WebUIs such as AUTOMATIC1111, ComfyUI, SD.Next and others.
|
4 |
+
|
5 |
+
# To get started you can find some cool `diffusers` trained LoRAs such as this cute Corgy
|
6 |
+
# https://huggingface.co/ignasbud/corgy_dog_LoRA/, download its `pytorch_lora_weights.safetensors` file
|
7 |
+
# and run the script:
|
8 |
+
# python convert_diffusers_sdxl_lora_to_webui.py --input_lora pytorch_lora_weights.safetensors --output_lora corgy.safetensors
|
9 |
+
# now you can use corgy.safetensors in your WebUI of choice!
|
10 |
+
|
11 |
+
# To train your own, here are some diffusers training scripts and utils that you can use and then convert:
|
12 |
+
# LoRA Ease - no code SDXL Dreambooth LoRA trainer: https://huggingface.co/spaces/multimodalart/lora-ease
|
13 |
+
# Dreambooth Advanced Training Script - state of the art techniques such as pivotal tuning and prodigy optimizer:
|
14 |
+
# - Script: https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py
|
15 |
+
# - Colab (only on Pro): https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_Dreambooth_LoRA_advanced_example.ipynb
|
16 |
+
# Canonical diffusers training scripts:
|
17 |
+
# - Script: https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora_sdxl.py
|
18 |
+
# - Colab (runs on free tier): https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_DreamBooth_LoRA_.ipynb
|
19 |
+
|
20 |
+
import argparse
|
21 |
+
import os
|
22 |
+
|
23 |
+
from safetensors.torch import load_file, save_file
|
24 |
+
from diffusers.utils import convert_all_state_dict_to_peft, convert_state_dict_to_kohya
|
25 |
+
from pathlib import Path
|
26 |
+
import gradio as gr
|
27 |
+
|
28 |
+
from huggingface_hub import hf_hub_download, HfApi
|
29 |
+
from huggingface_hub import HfApi, HfFolder, hf_hub_url, snapshot_download
|
30 |
+
import os
|
31 |
+
from pathlib import Path
|
32 |
+
import shutil
|
33 |
+
import gc
|
34 |
+
from utils import get_token, set_token, is_repo_exists, get_model_type
|
35 |
+
|
36 |
+
def convert_and_save(input_lora, output_lora=None):
|
37 |
+
if output_lora is None:
|
38 |
+
base_name = os.path.splitext(input_lora)[0]
|
39 |
+
output_lora = f"{base_name}_webui.safetensors"
|
40 |
+
|
41 |
+
diffusers_state_dict = load_file(input_lora)
|
42 |
+
try:
|
43 |
+
peft_state_dict = convert_all_state_dict_to_peft(diffusers_state_dict)
|
44 |
+
kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict)
|
45 |
+
except Exception: # skipped
|
46 |
+
kohya_state_dict = diffusers_state_dict
|
47 |
+
save_file(kohya_state_dict, output_lora)
|
48 |
+
|
49 |
+
|
50 |
+
def download_repo_lora(repo_id, local_file, progress=gr.Progress(track_tqdm=True)):
|
51 |
+
hf_token = get_token()
|
52 |
+
lora_filename = "pytorch_lora_weights.safetensors"
|
53 |
+
lora_path = Path(lora_filename)
|
54 |
+
api = HfApi(token=hf_token)
|
55 |
+
try:
|
56 |
+
if not api.file_exists(repo_id=repo_id, filename=lora_filename, token=hf_token):
|
57 |
+
print(f"Error: This repo isn't diffusers LoRA repo: {repo_id}.")
|
58 |
+
return None
|
59 |
+
if lora_path.exists():
|
60 |
+
print(f"Error: Download file already exists: {lora_filename}.")
|
61 |
+
return None
|
62 |
+
hf_hub_download(repo_id=repo_id, filename=lora_filename, local_dir=".")
|
63 |
+
if lora_path.exists(): lora_path.rename(Path(local_file))
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error: Failed to download from {repo_id}. {e}")
|
66 |
+
return local_file
|
67 |
+
|
68 |
+
|
69 |
+
def convert_repo_to_safetensors_sdxl_lora(repo_id, progress=gr.Progress(track_tqdm=True)):
|
70 |
+
download_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}_diffusers.safetensors"
|
71 |
+
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}_webui.safetensors"
|
72 |
+
progress(0, desc="Start downloading...")
|
73 |
+
download_repo_lora(repo_id, download_filename)
|
74 |
+
progress(0, desc="Start converting...")
|
75 |
+
convert_and_save(download_filename, output_filename)
|
76 |
+
progress(1, desc="Converted.")
|
77 |
+
Path(download_filename).unlink()
|
78 |
+
return output_filename
|
79 |
+
|
80 |
+
|
81 |
+
def convert_repo_to_safetensors_sdxl_lora_multi(repo_id, files, progress=gr.Progress(track_tqdm=True)):
|
82 |
+
file = convert_repo_to_safetensors_sdxl_lora(repo_id)
|
83 |
+
if not files: files = []
|
84 |
+
files.append(file)
|
85 |
+
return gr.update(value=files)
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
parser = argparse.ArgumentParser(description="Convert LoRA model to PEFT and then to Kohya format from Repo.")
|
90 |
+
parser.add_argument("--repo_id", type=str, required=True, help="URL to the Repo of input LoRA model in the diffusers format.")
|
91 |
+
|
92 |
+
args = parser.parse_args()
|
93 |
+
|
94 |
+
convert_repo_to_safetensors_sdxl_lora(args.repo_id)
|
95 |
+
|
96 |
+
|
97 |
+
# Usage: python convert_repo_to_safetensors_sdxl_lora.py --repo_id nroggendorff/zelda-lora
|
local/convert_repo_to_safetensors.py
CHANGED
@@ -269,7 +269,7 @@ def convert_openai_text_enc_state_dict(text_enc_dict):
|
|
269 |
return text_enc_dict
|
270 |
|
271 |
|
272 |
-
def convert_diffusers_to_safetensors(model_path, checkpoint_path,
|
273 |
# Path for safetensors
|
274 |
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
275 |
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
@@ -325,8 +325,9 @@ def convert_diffusers_to_safetensors(model_path, checkpoint_path, half = True):
|
|
325 |
# Put together new checkpoint
|
326 |
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict, **text_enc_2_dict}
|
327 |
|
328 |
-
if half
|
329 |
-
|
|
|
330 |
|
331 |
save_file(state_dict, checkpoint_path)
|
332 |
|
@@ -336,15 +337,15 @@ def download_repo(repo_id, dir_path):
|
|
336 |
try:
|
337 |
snapshot_download(repo_id=repo_id, local_dir=dir_path)
|
338 |
except Exception as e:
|
339 |
-
print(f"Error: Failed to download {repo_id}. ")
|
340 |
return
|
341 |
|
342 |
|
343 |
-
def convert_repo_to_safetensors(repo_id,
|
344 |
download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
|
345 |
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
|
346 |
download_repo(repo_id, download_dir)
|
347 |
-
convert_diffusers_to_safetensors(download_dir, output_filename,
|
348 |
return output_filename
|
349 |
|
350 |
|
@@ -352,12 +353,12 @@ if __name__ == "__main__":
|
|
352 |
parser = argparse.ArgumentParser()
|
353 |
|
354 |
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
355 |
-
parser.add_argument("--
|
356 |
|
357 |
args = parser.parse_args()
|
358 |
assert args.repo_id is not None, "Must provide a Repo ID!"
|
359 |
|
360 |
-
convert_repo_to_safetensors(args.repo_id, args.
|
361 |
|
362 |
|
363 |
# Usage: python convert_repo_to_safetensors.py --repo_id GraydientPlatformAPI/goodfit-pony41-xl
|
|
|
269 |
return text_enc_dict
|
270 |
|
271 |
|
272 |
+
def convert_diffusers_to_safetensors(model_path, checkpoint_path, dtype="fp16"):
|
273 |
# Path for safetensors
|
274 |
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
275 |
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
|
|
325 |
# Put together new checkpoint
|
326 |
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict, **text_enc_2_dict}
|
327 |
|
328 |
+
if dtype == "fp16": state_dict = {k: v.half() for k, v in state_dict.items()}
|
329 |
+
elif dtype == "fp32": state_dict = {k: v.to(torch.float32) for k, v in state_dict.items()}
|
330 |
+
elif dtype == "bf16": state_dict = {k: v.to(torch.bfloat16) for k, v in state_dict.items()}
|
331 |
|
332 |
save_file(state_dict, checkpoint_path)
|
333 |
|
|
|
337 |
try:
|
338 |
snapshot_download(repo_id=repo_id, local_dir=dir_path)
|
339 |
except Exception as e:
|
340 |
+
print(f"Error: Failed to download {repo_id}. {e}")
|
341 |
return
|
342 |
|
343 |
|
344 |
+
def convert_repo_to_safetensors(repo_id, dtype="fp16"):
|
345 |
download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
|
346 |
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
|
347 |
download_repo(repo_id, download_dir)
|
348 |
+
convert_diffusers_to_safetensors(download_dir, output_filename, dtype)
|
349 |
return output_filename
|
350 |
|
351 |
|
|
|
353 |
parser = argparse.ArgumentParser()
|
354 |
|
355 |
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
356 |
+
parser.add_argument("--dtype", default="fp16", type=str, choices=["fp16", "fp32", "bf16", "default"], help='Output data type. (Default: "fp16")')
|
357 |
|
358 |
args = parser.parse_args()
|
359 |
assert args.repo_id is not None, "Must provide a Repo ID!"
|
360 |
|
361 |
+
convert_repo_to_safetensors(args.repo_id, args.dtype)
|
362 |
|
363 |
|
364 |
# Usage: python convert_repo_to_safetensors.py --repo_id GraydientPlatformAPI/goodfit-pony41-xl
|
local/convert_repo_to_safetensors_sd.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Script for converting a HF Diffusers saved pipeline to a Stable Diffusion checkpoint.
|
2 |
+
# *Only* converts the UNet, VAE, and Text Encoder.
|
3 |
+
# Does not convert optimizer state or any other thing.
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import os.path as osp
|
7 |
+
import re
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from safetensors.torch import load_file, save_file
|
11 |
+
|
12 |
+
|
13 |
+
# =================#
|
14 |
+
# UNet Conversion #
|
15 |
+
# =================#
|
16 |
+
|
17 |
+
unet_conversion_map = [
|
18 |
+
# (stable-diffusion, HF Diffusers)
|
19 |
+
("time_embed.0.weight", "time_embedding.linear_1.weight"),
|
20 |
+
("time_embed.0.bias", "time_embedding.linear_1.bias"),
|
21 |
+
("time_embed.2.weight", "time_embedding.linear_2.weight"),
|
22 |
+
("time_embed.2.bias", "time_embedding.linear_2.bias"),
|
23 |
+
("input_blocks.0.0.weight", "conv_in.weight"),
|
24 |
+
("input_blocks.0.0.bias", "conv_in.bias"),
|
25 |
+
("out.0.weight", "conv_norm_out.weight"),
|
26 |
+
("out.0.bias", "conv_norm_out.bias"),
|
27 |
+
("out.2.weight", "conv_out.weight"),
|
28 |
+
("out.2.bias", "conv_out.bias"),
|
29 |
+
]
|
30 |
+
|
31 |
+
unet_conversion_map_resnet = [
|
32 |
+
# (stable-diffusion, HF Diffusers)
|
33 |
+
("in_layers.0", "norm1"),
|
34 |
+
("in_layers.2", "conv1"),
|
35 |
+
("out_layers.0", "norm2"),
|
36 |
+
("out_layers.3", "conv2"),
|
37 |
+
("emb_layers.1", "time_emb_proj"),
|
38 |
+
("skip_connection", "conv_shortcut"),
|
39 |
+
]
|
40 |
+
|
41 |
+
unet_conversion_map_layer = []
|
42 |
+
# hardcoded number of downblocks and resnets/attentions...
|
43 |
+
# would need smarter logic for other networks.
|
44 |
+
for i in range(4):
|
45 |
+
# loop over downblocks/upblocks
|
46 |
+
|
47 |
+
for j in range(2):
|
48 |
+
# loop over resnets/attentions for downblocks
|
49 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
50 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
51 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
52 |
+
|
53 |
+
if i < 3:
|
54 |
+
# no attention layers in down_blocks.3
|
55 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
56 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
57 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
58 |
+
|
59 |
+
for j in range(3):
|
60 |
+
# loop over resnets/attentions for upblocks
|
61 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
62 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
63 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
64 |
+
|
65 |
+
if i > 0:
|
66 |
+
# no attention layers in up_blocks.0
|
67 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
68 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
69 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
70 |
+
|
71 |
+
if i < 3:
|
72 |
+
# no downsample in down_blocks.3
|
73 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
74 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
75 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
76 |
+
|
77 |
+
# no upsample in up_blocks.3
|
78 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
79 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{1 if i == 0 else 2}."
|
80 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
81 |
+
|
82 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
83 |
+
sd_mid_atn_prefix = "middle_block.1."
|
84 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
85 |
+
|
86 |
+
for j in range(2):
|
87 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
88 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
89 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
90 |
+
|
91 |
+
|
92 |
+
def convert_unet_state_dict(unet_state_dict):
|
93 |
+
# buyer beware: this is a *brittle* function,
|
94 |
+
# and correct output requires that all of these pieces interact in
|
95 |
+
# the exact order in which I have arranged them.
|
96 |
+
mapping = {k: k for k in unet_state_dict.keys()}
|
97 |
+
for sd_name, hf_name in unet_conversion_map:
|
98 |
+
mapping[hf_name] = sd_name
|
99 |
+
for k, v in mapping.items():
|
100 |
+
if "resnets" in k:
|
101 |
+
for sd_part, hf_part in unet_conversion_map_resnet:
|
102 |
+
v = v.replace(hf_part, sd_part)
|
103 |
+
mapping[k] = v
|
104 |
+
for k, v in mapping.items():
|
105 |
+
for sd_part, hf_part in unet_conversion_map_layer:
|
106 |
+
v = v.replace(hf_part, sd_part)
|
107 |
+
mapping[k] = v
|
108 |
+
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
|
109 |
+
return new_state_dict
|
110 |
+
|
111 |
+
|
112 |
+
# ================#
|
113 |
+
# VAE Conversion #
|
114 |
+
# ================#
|
115 |
+
|
116 |
+
vae_conversion_map = [
|
117 |
+
# (stable-diffusion, HF Diffusers)
|
118 |
+
("nin_shortcut", "conv_shortcut"),
|
119 |
+
("norm_out", "conv_norm_out"),
|
120 |
+
("mid.attn_1.", "mid_block.attentions.0."),
|
121 |
+
]
|
122 |
+
|
123 |
+
for i in range(4):
|
124 |
+
# down_blocks have two resnets
|
125 |
+
for j in range(2):
|
126 |
+
hf_down_prefix = f"encoder.down_blocks.{i}.resnets.{j}."
|
127 |
+
sd_down_prefix = f"encoder.down.{i}.block.{j}."
|
128 |
+
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
|
129 |
+
|
130 |
+
if i < 3:
|
131 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0."
|
132 |
+
sd_downsample_prefix = f"down.{i}.downsample."
|
133 |
+
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
|
134 |
+
|
135 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
136 |
+
sd_upsample_prefix = f"up.{3-i}.upsample."
|
137 |
+
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
|
138 |
+
|
139 |
+
# up_blocks have three resnets
|
140 |
+
# also, up blocks in hf are numbered in reverse from sd
|
141 |
+
for j in range(3):
|
142 |
+
hf_up_prefix = f"decoder.up_blocks.{i}.resnets.{j}."
|
143 |
+
sd_up_prefix = f"decoder.up.{3-i}.block.{j}."
|
144 |
+
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
|
145 |
+
|
146 |
+
# this part accounts for mid blocks in both the encoder and the decoder
|
147 |
+
for i in range(2):
|
148 |
+
hf_mid_res_prefix = f"mid_block.resnets.{i}."
|
149 |
+
sd_mid_res_prefix = f"mid.block_{i+1}."
|
150 |
+
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
151 |
+
|
152 |
+
|
153 |
+
vae_conversion_map_attn = [
|
154 |
+
# (stable-diffusion, HF Diffusers)
|
155 |
+
("norm.", "group_norm."),
|
156 |
+
("q.", "query."),
|
157 |
+
("k.", "key."),
|
158 |
+
("v.", "value."),
|
159 |
+
("proj_out.", "proj_attn."),
|
160 |
+
]
|
161 |
+
|
162 |
+
# This is probably not the most ideal solution, but it does work.
|
163 |
+
vae_extra_conversion_map = [
|
164 |
+
("to_q", "q"),
|
165 |
+
("to_k", "k"),
|
166 |
+
("to_v", "v"),
|
167 |
+
("to_out.0", "proj_out"),
|
168 |
+
]
|
169 |
+
|
170 |
+
|
171 |
+
def reshape_weight_for_sd(w):
|
172 |
+
# convert HF linear weights to SD conv2d weights
|
173 |
+
if not w.ndim == 1:
|
174 |
+
return w.reshape(*w.shape, 1, 1)
|
175 |
+
else:
|
176 |
+
return w
|
177 |
+
|
178 |
+
|
179 |
+
def convert_vae_state_dict(vae_state_dict):
|
180 |
+
mapping = {k: k for k in vae_state_dict.keys()}
|
181 |
+
for k, v in mapping.items():
|
182 |
+
for sd_part, hf_part in vae_conversion_map:
|
183 |
+
v = v.replace(hf_part, sd_part)
|
184 |
+
mapping[k] = v
|
185 |
+
for k, v in mapping.items():
|
186 |
+
if "attentions" in k:
|
187 |
+
for sd_part, hf_part in vae_conversion_map_attn:
|
188 |
+
v = v.replace(hf_part, sd_part)
|
189 |
+
mapping[k] = v
|
190 |
+
new_state_dict = {v: vae_state_dict[k] for k, v in mapping.items()}
|
191 |
+
weights_to_convert = ["q", "k", "v", "proj_out"]
|
192 |
+
keys_to_rename = {}
|
193 |
+
for k, v in new_state_dict.items():
|
194 |
+
for weight_name in weights_to_convert:
|
195 |
+
if f"mid.attn_1.{weight_name}.weight" in k:
|
196 |
+
print(f"Reshaping {k} for SD format")
|
197 |
+
new_state_dict[k] = reshape_weight_for_sd(v)
|
198 |
+
for weight_name, real_weight_name in vae_extra_conversion_map:
|
199 |
+
if f"mid.attn_1.{weight_name}.weight" in k or f"mid.attn_1.{weight_name}.bias" in k:
|
200 |
+
keys_to_rename[k] = k.replace(weight_name, real_weight_name)
|
201 |
+
for k, v in keys_to_rename.items():
|
202 |
+
if k in new_state_dict:
|
203 |
+
print(f"Renaming {k} to {v}")
|
204 |
+
new_state_dict[v] = reshape_weight_for_sd(new_state_dict[k])
|
205 |
+
del new_state_dict[k]
|
206 |
+
return new_state_dict
|
207 |
+
|
208 |
+
|
209 |
+
# =========================#
|
210 |
+
# Text Encoder Conversion #
|
211 |
+
# =========================#
|
212 |
+
|
213 |
+
|
214 |
+
textenc_conversion_lst = [
|
215 |
+
# (stable-diffusion, HF Diffusers)
|
216 |
+
("resblocks.", "text_model.encoder.layers."),
|
217 |
+
("ln_1", "layer_norm1"),
|
218 |
+
("ln_2", "layer_norm2"),
|
219 |
+
(".c_fc.", ".fc1."),
|
220 |
+
(".c_proj.", ".fc2."),
|
221 |
+
(".attn", ".self_attn"),
|
222 |
+
("ln_final.", "transformer.text_model.final_layer_norm."),
|
223 |
+
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
|
224 |
+
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
|
225 |
+
]
|
226 |
+
protected = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
|
227 |
+
textenc_pattern = re.compile("|".join(protected.keys()))
|
228 |
+
|
229 |
+
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
|
230 |
+
code2idx = {"q": 0, "k": 1, "v": 2}
|
231 |
+
|
232 |
+
|
233 |
+
def convert_text_enc_state_dict_v20(text_enc_dict):
|
234 |
+
new_state_dict = {}
|
235 |
+
capture_qkv_weight = {}
|
236 |
+
capture_qkv_bias = {}
|
237 |
+
for k, v in text_enc_dict.items():
|
238 |
+
if (
|
239 |
+
k.endswith(".self_attn.q_proj.weight")
|
240 |
+
or k.endswith(".self_attn.k_proj.weight")
|
241 |
+
or k.endswith(".self_attn.v_proj.weight")
|
242 |
+
):
|
243 |
+
k_pre = k[: -len(".q_proj.weight")]
|
244 |
+
k_code = k[-len("q_proj.weight")]
|
245 |
+
if k_pre not in capture_qkv_weight:
|
246 |
+
capture_qkv_weight[k_pre] = [None, None, None]
|
247 |
+
capture_qkv_weight[k_pre][code2idx[k_code]] = v
|
248 |
+
continue
|
249 |
+
|
250 |
+
if (
|
251 |
+
k.endswith(".self_attn.q_proj.bias")
|
252 |
+
or k.endswith(".self_attn.k_proj.bias")
|
253 |
+
or k.endswith(".self_attn.v_proj.bias")
|
254 |
+
):
|
255 |
+
k_pre = k[: -len(".q_proj.bias")]
|
256 |
+
k_code = k[-len("q_proj.bias")]
|
257 |
+
if k_pre not in capture_qkv_bias:
|
258 |
+
capture_qkv_bias[k_pre] = [None, None, None]
|
259 |
+
capture_qkv_bias[k_pre][code2idx[k_code]] = v
|
260 |
+
continue
|
261 |
+
|
262 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
|
263 |
+
new_state_dict[relabelled_key] = v
|
264 |
+
|
265 |
+
for k_pre, tensors in capture_qkv_weight.items():
|
266 |
+
if None in tensors:
|
267 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
268 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
269 |
+
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
|
270 |
+
|
271 |
+
for k_pre, tensors in capture_qkv_bias.items():
|
272 |
+
if None in tensors:
|
273 |
+
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
|
274 |
+
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
|
275 |
+
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
|
276 |
+
|
277 |
+
return new_state_dict
|
278 |
+
|
279 |
+
|
280 |
+
def convert_text_enc_state_dict(text_enc_dict):
|
281 |
+
return text_enc_dict
|
282 |
+
|
283 |
+
|
284 |
+
def convert_diffusers_to_safetensors(model_path, checkpoint_path, dtype="fp16"):
|
285 |
+
# Path for safetensors
|
286 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
|
287 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
|
288 |
+
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
|
289 |
+
|
290 |
+
# Load models from safetensors if it exists, if it doesn't pytorch
|
291 |
+
if osp.exists(unet_path):
|
292 |
+
unet_state_dict = load_file(unet_path, device="cpu")
|
293 |
+
else:
|
294 |
+
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
|
295 |
+
unet_state_dict = torch.load(unet_path, map_location="cpu")
|
296 |
+
|
297 |
+
if osp.exists(vae_path):
|
298 |
+
vae_state_dict = load_file(vae_path, device="cpu")
|
299 |
+
else:
|
300 |
+
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
|
301 |
+
vae_state_dict = torch.load(vae_path, map_location="cpu")
|
302 |
+
|
303 |
+
if osp.exists(text_enc_path):
|
304 |
+
text_enc_dict = load_file(text_enc_path, device="cpu")
|
305 |
+
else:
|
306 |
+
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
|
307 |
+
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
|
308 |
+
|
309 |
+
# Convert the UNet model
|
310 |
+
unet_state_dict = convert_unet_state_dict(unet_state_dict)
|
311 |
+
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
|
312 |
+
|
313 |
+
# Convert the VAE model
|
314 |
+
vae_state_dict = convert_vae_state_dict(vae_state_dict)
|
315 |
+
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
|
316 |
+
|
317 |
+
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
|
318 |
+
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
|
319 |
+
|
320 |
+
if is_v20_model:
|
321 |
+
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
|
322 |
+
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
|
323 |
+
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
|
324 |
+
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
|
325 |
+
else:
|
326 |
+
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
|
327 |
+
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
|
328 |
+
|
329 |
+
# Put together new checkpoint
|
330 |
+
state_dict = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
|
331 |
+
|
332 |
+
if dtype == "fp16": state_dict = {k: v.half() for k, v in state_dict.items()}
|
333 |
+
elif dtype == "fp32": state_dict = {k: v.to(torch.float32) for k, v in state_dict.items()}
|
334 |
+
elif dtype == "bf16": state_dict = {k: v.to(torch.bfloat16) for k, v in state_dict.items()}
|
335 |
+
|
336 |
+
save_file(state_dict, checkpoint_path)
|
337 |
+
|
338 |
+
|
339 |
+
def download_repo(repo_id, dir_path):
|
340 |
+
from huggingface_hub import snapshot_download
|
341 |
+
try:
|
342 |
+
snapshot_download(repo_id=repo_id, local_dir=dir_path)
|
343 |
+
except Exception as e:
|
344 |
+
print(f"Error: Failed to download {repo_id}. ")
|
345 |
+
return
|
346 |
+
|
347 |
+
|
348 |
+
def convert_repo_to_safetensors(repo_id, dtype="fp16"):
|
349 |
+
download_dir = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}"
|
350 |
+
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}.safetensors"
|
351 |
+
download_repo(repo_id, download_dir)
|
352 |
+
convert_diffusers_to_safetensors(download_dir, output_filename, dtype)
|
353 |
+
return output_filename
|
354 |
+
|
355 |
+
|
356 |
+
if __name__ == "__main__":
|
357 |
+
parser = argparse.ArgumentParser()
|
358 |
+
|
359 |
+
parser.add_argument("--repo_id", default=None, type=str, required=True, help="HF Repo ID of the model to convert.")
|
360 |
+
parser.add_argument("--dtype", default="fp16", type=str, choices=["fp16", "fp32", "bf16", "default"], help='Output data type. (Default: "fp16")')
|
361 |
+
|
362 |
+
args = parser.parse_args()
|
363 |
+
assert args.repo_id is not None, "Must provide a Repo ID!"
|
364 |
+
|
365 |
+
convert_repo_to_safetensors(args.repo_id, args.dtype)
|
local/convert_repo_to_safetensors_sdxl_lora.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Script for converting a Hugging Face Diffusers trained SDXL LoRAs to Kohya format
|
2 |
+
# This means that you can input your diffusers-trained LoRAs and
|
3 |
+
# Get the output to work with WebUIs such as AUTOMATIC1111, ComfyUI, SD.Next and others.
|
4 |
+
|
5 |
+
# To get started you can find some cool `diffusers` trained LoRAs such as this cute Corgy
|
6 |
+
# https://huggingface.co/ignasbud/corgy_dog_LoRA/, download its `pytorch_lora_weights.safetensors` file
|
7 |
+
# and run the script:
|
8 |
+
# python convert_diffusers_sdxl_lora_to_webui.py --input_lora pytorch_lora_weights.safetensors --output_lora corgy.safetensors
|
9 |
+
# now you can use corgy.safetensors in your WebUI of choice!
|
10 |
+
|
11 |
+
# To train your own, here are some diffusers training scripts and utils that you can use and then convert:
|
12 |
+
# LoRA Ease - no code SDXL Dreambooth LoRA trainer: https://huggingface.co/spaces/multimodalart/lora-ease
|
13 |
+
# Dreambooth Advanced Training Script - state of the art techniques such as pivotal tuning and prodigy optimizer:
|
14 |
+
# - Script: https://github.com/huggingface/diffusers/blob/main/examples/advanced_diffusion_training/train_dreambooth_lora_sdxl_advanced.py
|
15 |
+
# - Colab (only on Pro): https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_Dreambooth_LoRA_advanced_example.ipynb
|
16 |
+
# Canonical diffusers training scripts:
|
17 |
+
# - Script: https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora_sdxl.py
|
18 |
+
# - Colab (runs on free tier): https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/SDXL_DreamBooth_LoRA_.ipynb
|
19 |
+
|
20 |
+
import argparse
|
21 |
+
import os
|
22 |
+
|
23 |
+
from safetensors.torch import load_file, save_file
|
24 |
+
from diffusers.utils import convert_all_state_dict_to_peft, convert_state_dict_to_kohya
|
25 |
+
from pathlib import Path
|
26 |
+
|
27 |
+
def convert_and_save(input_lora, output_lora=None):
|
28 |
+
if output_lora is None:
|
29 |
+
base_name = os.path.splitext(input_lora)[0]
|
30 |
+
output_lora = f"{base_name}_webui.safetensors"
|
31 |
+
|
32 |
+
diffusers_state_dict = load_file(input_lora)
|
33 |
+
try:
|
34 |
+
peft_state_dict = convert_all_state_dict_to_peft(diffusers_state_dict)
|
35 |
+
kohya_state_dict = convert_state_dict_to_kohya(peft_state_dict)
|
36 |
+
except Exception: # skipped
|
37 |
+
kohya_state_dict = diffusers_state_dict
|
38 |
+
save_file(kohya_state_dict, output_lora)
|
39 |
+
|
40 |
+
|
41 |
+
def download_repo_lora(repo_id, local_file):
|
42 |
+
from huggingface_hub import hf_hub_download, HfApi
|
43 |
+
lora_filename = "pytorch_lora_weights.safetensors"
|
44 |
+
lora_path = Path(lora_filename)
|
45 |
+
api = HfApi()
|
46 |
+
try:
|
47 |
+
if not api.file_exists(repo_id=repo_id, filename=lora_filename):
|
48 |
+
print(f"Error: This repo isn't diffusers LoRA repo: {repo_id}. ")
|
49 |
+
return None
|
50 |
+
if lora_path.exists():
|
51 |
+
print(f"Error: Download file already exists: {lora_filename}. ")
|
52 |
+
return None
|
53 |
+
hf_hub_download(repo_id=repo_id, filename=lora_filename, local_dir=".")
|
54 |
+
if lora_path.exists(): lora_path.rename(Path(local_file))
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error: Failed to download from {repo_id}. {e}")
|
57 |
+
return local_file
|
58 |
+
|
59 |
+
|
60 |
+
def convert_repo_to_safetensors_sdxl_lora(repo_id):
|
61 |
+
download_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}_diffusers.safetensors"
|
62 |
+
output_filename = f"{repo_id.split('/')[0]}_{repo_id.split('/')[-1]}_webui.safetensors"
|
63 |
+
download_repo_lora(repo_id, download_filename)
|
64 |
+
convert_and_save(download_filename, output_filename)
|
65 |
+
return output_filename
|
66 |
+
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
parser = argparse.ArgumentParser(description="Convert LoRA model to PEFT and then to Kohya format from Repo.")
|
70 |
+
parser.add_argument("--repo_id", type=str, required=True, help="URL to the Repo of input LoRA model in the diffusers format.")
|
71 |
+
|
72 |
+
args = parser.parse_args()
|
73 |
+
|
74 |
+
convert_repo_to_safetensors_sdxl_lora(args.repo_id)
|
75 |
+
|
76 |
+
|
77 |
+
# Usage: python convert_repo_to_safetensors_sdxl_lora.py --repo_id nroggendorff/zelda-lora
|
local/requirements.txt
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
torch
|
2 |
safetensors
|
3 |
-
huggingface-hub
|
|
|
|
|
|
|
|
|
|
1 |
torch
|
2 |
safetensors
|
3 |
+
huggingface-hub
|
4 |
+
accelerate
|
5 |
+
diffusers
|
6 |
+
transformers
|
7 |
+
peft
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
git-lfs aria2
|
requirements.txt
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
torch
|
2 |
safetensors
|
3 |
-
huggingface-hub
|
|
|
|
|
|
|
|
|
|
1 |
torch
|
2 |
safetensors
|
3 |
+
huggingface-hub
|
4 |
+
accelerate
|
5 |
+
diffusers
|
6 |
+
transformers
|
7 |
+
peft
|
utils.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import HfApi, HfFolder, hf_hub_download
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
import shutil
|
6 |
+
import gc
|
7 |
+
import re
|
8 |
+
import urllib.parse
|
9 |
+
|
10 |
+
|
11 |
+
def get_token():
|
12 |
+
try:
|
13 |
+
token = HfFolder.get_token()
|
14 |
+
except Exception:
|
15 |
+
token = ""
|
16 |
+
return token
|
17 |
+
|
18 |
+
|
19 |
+
def set_token(token):
|
20 |
+
try:
|
21 |
+
HfFolder.save_token(token)
|
22 |
+
except Exception:
|
23 |
+
print(f"Error: Failed to save token.")
|
24 |
+
|
25 |
+
|
26 |
+
def get_user_agent():
|
27 |
+
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
|
28 |
+
|
29 |
+
|
30 |
+
def is_repo_exists(repo_id: str, repo_type: str="model"):
|
31 |
+
hf_token = get_token()
|
32 |
+
api = HfApi(token=hf_token)
|
33 |
+
try:
|
34 |
+
if api.repo_exists(repo_id=repo_id, repo_type=repo_type, token=hf_token): return True
|
35 |
+
else: return False
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Error: Failed to connect {repo_id} ({repo_type}). {e}")
|
38 |
+
return True # for safe
|
39 |
+
|
40 |
+
|
41 |
+
MODEL_TYPE_CLASS = {
|
42 |
+
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
43 |
+
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
44 |
+
"diffusers:FluxPipeline": "FLUX",
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
def get_model_type(repo_id: str):
|
49 |
+
hf_token = get_token()
|
50 |
+
api = HfApi(token=hf_token)
|
51 |
+
lora_filename = "pytorch_lora_weights.safetensors"
|
52 |
+
diffusers_filename = "model_index.json"
|
53 |
+
default = "SDXL"
|
54 |
+
try:
|
55 |
+
if api.file_exists(repo_id=repo_id, filename=lora_filename, token=hf_token): return "LoRA"
|
56 |
+
if not api.file_exists(repo_id=repo_id, filename=diffusers_filename, token=hf_token): return "None"
|
57 |
+
model = api.model_info(repo_id=repo_id, token=hf_token)
|
58 |
+
tags = model.tags
|
59 |
+
for tag in tags:
|
60 |
+
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
61 |
+
except Exception:
|
62 |
+
return default
|
63 |
+
return default
|
64 |
+
|
65 |
+
|
66 |
+
def list_sub(a, b):
|
67 |
+
return [e for e in a if e not in b]
|
68 |
+
|
69 |
+
|
70 |
+
def is_repo_name(s):
|
71 |
+
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
72 |
+
|
73 |
+
|
74 |
+
def split_hf_url(url: str):
|
75 |
+
try:
|
76 |
+
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.safetensors)(?:\?download=true)?$', url)[0])
|
77 |
+
if len(s) < 4: return "", "", "", ""
|
78 |
+
repo_id = s[1]
|
79 |
+
repo_type = "dataset" if s[0] == "datasets" else "model"
|
80 |
+
subfolder = urllib.parse.unquote(s[2]) if s[2] else None
|
81 |
+
filename = urllib.parse.unquote(s[3])
|
82 |
+
return repo_id, filename, subfolder, repo_type
|
83 |
+
except Exception as e:
|
84 |
+
print(e)
|
85 |
+
|
86 |
+
|
87 |
+
def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
|
88 |
+
hf_token = get_token()
|
89 |
+
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
90 |
+
try:
|
91 |
+
if subfolder is not None: hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
92 |
+
else: hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
|
93 |
+
except Exception as e:
|
94 |
+
print(f"Failed to download: {e}")
|
95 |
+
|
96 |
+
|
97 |
+
def download_thing(directory, url, civitai_api_key="", progress=gr.Progress(track_tqdm=True)): # requires aria2, gdown
|
98 |
+
hf_token = get_token()
|
99 |
+
url = url.strip()
|
100 |
+
if "drive.google.com" in url:
|
101 |
+
original_dir = os.getcwd()
|
102 |
+
os.chdir(directory)
|
103 |
+
os.system(f"gdown --fuzzy {url}")
|
104 |
+
os.chdir(original_dir)
|
105 |
+
elif "huggingface.co" in url:
|
106 |
+
url = url.replace("?download=true", "")
|
107 |
+
if "/blob/" in url:
|
108 |
+
url = url.replace("/blob/", "/resolve/")
|
109 |
+
#user_header = f'"Authorization: Bearer {hf_token}"'
|
110 |
+
if hf_token:
|
111 |
+
download_hf_file(directory, url)
|
112 |
+
#os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
113 |
+
else:
|
114 |
+
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
115 |
+
elif "civitai.com" in url:
|
116 |
+
if "?" in url:
|
117 |
+
url = url.split("?")[0]
|
118 |
+
if civitai_api_key:
|
119 |
+
url = url + f"?token={civitai_api_key}"
|
120 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
121 |
+
else:
|
122 |
+
print("You need an API key to download Civitai models.")
|
123 |
+
else:
|
124 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
125 |
+
|
126 |
+
|
127 |
+
def get_local_model_list(dir_path):
|
128 |
+
model_list = []
|
129 |
+
valid_extensions = ('.safetensors')
|
130 |
+
for file in Path(dir_path).glob("**/*.*"):
|
131 |
+
if file.is_file() and file.suffix in valid_extensions:
|
132 |
+
file_path = str(file)
|
133 |
+
model_list.append(file_path)
|
134 |
+
return model_list
|
135 |
+
|
136 |
+
|
137 |
+
def get_download_file(temp_dir, url, civitai_key, progress=gr.Progress(track_tqdm=True)):
|
138 |
+
if not "http" in url and is_repo_name(url) and not Path(url).exists():
|
139 |
+
print(f"Use HF Repo: {url}")
|
140 |
+
new_file = url
|
141 |
+
elif not "http" in url and Path(url).exists():
|
142 |
+
print(f"Use local file: {url}")
|
143 |
+
new_file = url
|
144 |
+
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists():
|
145 |
+
print(f"File to download alreday exists: {url}")
|
146 |
+
new_file = f"{temp_dir}/{url.split('/')[-1]}"
|
147 |
+
else:
|
148 |
+
print(f"Start downloading: {url}")
|
149 |
+
before = get_local_model_list(temp_dir)
|
150 |
+
try:
|
151 |
+
download_thing(temp_dir, url.strip(), civitai_key)
|
152 |
+
except Exception:
|
153 |
+
print(f"Download failed: {url}")
|
154 |
+
return ""
|
155 |
+
after = get_local_model_list(temp_dir)
|
156 |
+
new_file = list_sub(after, before)[0] if list_sub(after, before) else ""
|
157 |
+
if not new_file:
|
158 |
+
print(f"Download failed: {url}")
|
159 |
+
return ""
|
160 |
+
print(f"Download completed: {url}")
|
161 |
+
return new_file
|