|
import torch |
|
import spaces |
|
import gradio as gr |
|
from diffusers import FluxInpaintPipeline |
|
|
|
MARKDOWN = """ |
|
# FLUX.1 Inpainting 🔥 |
|
|
|
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for |
|
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos) |
|
for taking it to the next level by enabling inpainting with the FLUX. |
|
""" |
|
|
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = FluxInpaintPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE) |
|
|
|
|
|
@spaces.GPU() |
|
def process(input_image_editor, input_text, progress=gr.Progress(track_tqdm=True)): |
|
if not input_text: |
|
gr.Info("Please enter a text prompt.") |
|
return None |
|
|
|
image = input_image_editor['background'] |
|
mask_image = input_image_editor['layers'][0] |
|
|
|
if not image: |
|
gr.Info("Please upload an image.") |
|
return None |
|
|
|
if not mask_image: |
|
gr.Info("Please draw a mask on the image.") |
|
return None |
|
|
|
return pipe( |
|
prompt=input_text, |
|
image=image, |
|
mask_image=mask_image, |
|
width=1024, |
|
height=1024, |
|
strength=0.9 |
|
).images[0] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(MARKDOWN) |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image_editor_component = gr.ImageEditor( |
|
label='Image', |
|
type='pil', |
|
sources=["upload", "webcam"], |
|
image_mode='RGB', |
|
layers=False, |
|
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")) |
|
input_text_component = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
submit_button_component = gr.Button( |
|
value='Submit', variant='primary') |
|
with gr.Column(): |
|
output_image_component = gr.Image( |
|
type='pil', image_mode='RGB', label='Generated image') |
|
|
|
submit_button_component.click( |
|
fn=process, |
|
inputs=[ |
|
input_image_editor_component, |
|
input_text_component |
|
], |
|
outputs=[ |
|
output_image_component |
|
] |
|
) |
|
|
|
demo.launch(debug=False, show_error=True) |
|
|