Upload 3 files
Browse files- README.md +13 -13
- app.py +337 -336
- requirements.txt +12 -10
README.md
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
-
---
|
2 |
-
title: FLUX.1 [Inpainting with lora]
|
3 |
-
emoji: 🎨
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: pink
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.40.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: mit
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: FLUX.1 [Inpainting with lora]
|
3 |
+
emoji: 🎨
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: pink
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.40.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,336 +1,337 @@
|
|
1 |
-
from typing import Tuple
|
2 |
-
|
3 |
-
import requests
|
4 |
-
import random
|
5 |
-
import numpy as np
|
6 |
-
import gradio as gr
|
7 |
-
import spaces
|
8 |
-
import torch
|
9 |
-
from PIL import Image
|
10 |
-
from diffusers import FluxInpaintPipeline
|
11 |
-
from huggingface_hub import login
|
12 |
-
import os
|
13 |
-
import time
|
14 |
-
from gradio_imageslider import ImageSlider
|
15 |
-
|
16 |
-
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
17 |
-
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
18 |
-
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
19 |
-
import requests
|
20 |
-
from io import BytesIO
|
21 |
-
import PIL.Image
|
22 |
-
import requests
|
23 |
-
|
24 |
-
MARKDOWN = """
|
25 |
-
# FLUX.1 Inpainting with lora
|
26 |
-
"""
|
27 |
-
|
28 |
-
MAX_SEED = np.iinfo(np.int32).max
|
29 |
-
IMAGE_SIZE = 1024
|
30 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
-
HF_TOKEN =
|
32 |
-
|
33 |
-
#login(token=HF_TOKEN)
|
34 |
-
|
35 |
-
bfl_repo="black-forest-labs/FLUX.1-dev"
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
self.
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
self.
|
50 |
-
self.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
#
|
76 |
-
#
|
77 |
-
#
|
78 |
-
#
|
79 |
-
#
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
#
|
93 |
-
#
|
94 |
-
#
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
)
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
image
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
response.
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
response.
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
"
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import requests
|
4 |
+
import random
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
import spaces
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from diffusers import FluxInpaintPipeline
|
11 |
+
from huggingface_hub import login
|
12 |
+
import os
|
13 |
+
import time
|
14 |
+
from gradio_imageslider import ImageSlider
|
15 |
+
|
16 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
17 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
18 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
19 |
+
import requests
|
20 |
+
from io import BytesIO
|
21 |
+
import PIL.Image
|
22 |
+
import requests
|
23 |
+
|
24 |
+
MARKDOWN = """
|
25 |
+
# FLUX.1 Inpainting with lora
|
26 |
+
"""
|
27 |
+
|
28 |
+
MAX_SEED = np.iinfo(np.int32).max
|
29 |
+
IMAGE_SIZE = 1024
|
30 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
31 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
32 |
+
|
33 |
+
#login(token=HF_TOKEN)
|
34 |
+
|
35 |
+
#bfl_repo="black-forest-labs/FLUX.1-dev"
|
36 |
+
bfl_repo="camenduru/FLUX.1-dev-diffusers"
|
37 |
+
|
38 |
+
class calculateDuration:
|
39 |
+
def __init__(self, activity_name=""):
|
40 |
+
self.activity_name = activity_name
|
41 |
+
|
42 |
+
def __enter__(self):
|
43 |
+
self.start_time = time.time()
|
44 |
+
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
|
45 |
+
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
|
46 |
+
return self
|
47 |
+
|
48 |
+
def __exit__(self, exc_type, exc_value, traceback):
|
49 |
+
self.end_time = time.time()
|
50 |
+
self.elapsed_time = self.end_time - self.start_time
|
51 |
+
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
|
52 |
+
|
53 |
+
if self.activity_name:
|
54 |
+
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
55 |
+
else:
|
56 |
+
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
57 |
+
|
58 |
+
print(f"Activity: {self.activity_name}, End time: {self.start_time_formatted}")
|
59 |
+
|
60 |
+
|
61 |
+
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
62 |
+
image = image.convert("RGBA")
|
63 |
+
data = image.getdata()
|
64 |
+
new_data = []
|
65 |
+
for item in data:
|
66 |
+
avg = sum(item[:3]) / 3
|
67 |
+
if avg < threshold:
|
68 |
+
new_data.append((0, 0, 0, 0))
|
69 |
+
else:
|
70 |
+
new_data.append(item)
|
71 |
+
|
72 |
+
image.putdata(new_data)
|
73 |
+
return image
|
74 |
+
|
75 |
+
# text_encoder = CLIPTextModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/clip_l.safetensors"), torch_dtype=dtype)
|
76 |
+
# tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
77 |
+
# text_encoder_2 = T5EncoderModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors"), torch_dtype=dtype)
|
78 |
+
# tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
|
79 |
+
# vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype)
|
80 |
+
# transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype)
|
81 |
+
|
82 |
+
|
83 |
+
pipe = FluxInpaintPipeline.from_pretrained(bfl_repo, torch_dtype=torch.bfloat16).to(DEVICE)
|
84 |
+
|
85 |
+
|
86 |
+
def resize_image_dimensions(
|
87 |
+
original_resolution_wh: Tuple[int, int],
|
88 |
+
maximum_dimension: int = IMAGE_SIZE
|
89 |
+
) -> Tuple[int, int]:
|
90 |
+
width, height = original_resolution_wh
|
91 |
+
|
92 |
+
# if width <= maximum_dimension and height <= maximum_dimension:
|
93 |
+
# width = width - (width % 32)
|
94 |
+
# height = height - (height % 32)
|
95 |
+
# return width, height
|
96 |
+
|
97 |
+
if width > height:
|
98 |
+
scaling_factor = maximum_dimension / width
|
99 |
+
else:
|
100 |
+
scaling_factor = maximum_dimension / height
|
101 |
+
|
102 |
+
new_width = int(width * scaling_factor)
|
103 |
+
new_height = int(height * scaling_factor)
|
104 |
+
|
105 |
+
new_width = new_width - (new_width % 32)
|
106 |
+
new_height = new_height - (new_height % 32)
|
107 |
+
|
108 |
+
return new_width, new_height
|
109 |
+
|
110 |
+
|
111 |
+
@spaces.GPU(duration=100)
|
112 |
+
def process(
|
113 |
+
input_image_editor: dict,
|
114 |
+
image_url: str,
|
115 |
+
mask_url: str,
|
116 |
+
blur_mask: bool,
|
117 |
+
blur_factor: int,
|
118 |
+
lora_path: str,
|
119 |
+
lora_weights: str,
|
120 |
+
lora_scale: float,
|
121 |
+
trigger_word: str,
|
122 |
+
input_text: str,
|
123 |
+
seed_slicer: int,
|
124 |
+
randomize_seed_checkbox: bool,
|
125 |
+
strength_slider: float,
|
126 |
+
num_inference_steps_slider: int,
|
127 |
+
progress=gr.Progress(track_tqdm=True)
|
128 |
+
):
|
129 |
+
if not input_text:
|
130 |
+
gr.Info("Please enter a text prompt.")
|
131 |
+
return None, None
|
132 |
+
|
133 |
+
# default image edtiro
|
134 |
+
image = input_image_editor['background']
|
135 |
+
mask = input_image_editor['layers'][0]
|
136 |
+
|
137 |
+
if image_url:
|
138 |
+
print("start to fetch image from url", image_url)
|
139 |
+
response = requests.get(image_url)
|
140 |
+
response.raise_for_status()
|
141 |
+
image = PIL.Image.open(BytesIO(response.content))
|
142 |
+
print("fetch image success")
|
143 |
+
|
144 |
+
if mask_url:
|
145 |
+
print("start to fetch mask from url", mask_url)
|
146 |
+
response = requests.get(mask_url)
|
147 |
+
response.raise_for_status()
|
148 |
+
mask = PIL.Image.open(BytesIO(response.content))
|
149 |
+
print("fetch mask success")
|
150 |
+
|
151 |
+
if not image:
|
152 |
+
gr.Info("Please upload an image.")
|
153 |
+
return None, None
|
154 |
+
|
155 |
+
if not mask:
|
156 |
+
gr.Info("Please draw a mask on the image.")
|
157 |
+
return None, None
|
158 |
+
if blur_mask:
|
159 |
+
mask = pipe.mask_processor.blur(mask, blur_factor=blur_factor)
|
160 |
+
|
161 |
+
with calculateDuration("resize image"):
|
162 |
+
width, height = resize_image_dimensions(original_resolution_wh=image.size)
|
163 |
+
resized_image = image.resize((width, height), Image.LANCZOS)
|
164 |
+
resized_mask = mask.resize((width, height), Image.LANCZOS)
|
165 |
+
|
166 |
+
with calculateDuration("load lora"):
|
167 |
+
print(lora_path, lora_weights)
|
168 |
+
pipe.load_lora_weights(lora_path, weight_name=lora_weights)
|
169 |
+
|
170 |
+
if randomize_seed_checkbox:
|
171 |
+
seed_slicer = random.randint(0, MAX_SEED)
|
172 |
+
generator = torch.Generator().manual_seed(seed_slicer)
|
173 |
+
|
174 |
+
with calculateDuration("run pipe"):
|
175 |
+
print(input_text, width, height, strength_slider, num_inference_steps_slider, lora_scale)
|
176 |
+
result = pipe(
|
177 |
+
prompt=f"{input_text} {trigger_word}",
|
178 |
+
image=resized_image,
|
179 |
+
mask_image=resized_mask,
|
180 |
+
width=width,
|
181 |
+
height=height,
|
182 |
+
strength=strength_slider,
|
183 |
+
generator=generator,
|
184 |
+
num_inference_steps=num_inference_steps_slider,
|
185 |
+
max_sequence_length=256,
|
186 |
+
joint_attention_kwargs={"scale": lora_scale},
|
187 |
+
).images[0]
|
188 |
+
|
189 |
+
return [resized_image, result], resized_mask
|
190 |
+
|
191 |
+
|
192 |
+
with gr.Blocks() as demo:
|
193 |
+
gr.Markdown(MARKDOWN)
|
194 |
+
with gr.Row():
|
195 |
+
with gr.Column():
|
196 |
+
input_image_editor_component = gr.ImageEditor(
|
197 |
+
label='Image',
|
198 |
+
type='pil',
|
199 |
+
sources=["upload", "webcam"],
|
200 |
+
image_mode='RGB',
|
201 |
+
layers=False,
|
202 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
|
203 |
+
|
204 |
+
image_url = gr.Textbox(
|
205 |
+
label="image url",
|
206 |
+
show_label=True,
|
207 |
+
max_lines=1,
|
208 |
+
placeholder="Enter your image url (Optional)",
|
209 |
+
)
|
210 |
+
mask_url = gr.Textbox(
|
211 |
+
label="Mask image url",
|
212 |
+
show_label=True,
|
213 |
+
max_lines=1,
|
214 |
+
placeholder="Enter your mask image url (Optional)",
|
215 |
+
)
|
216 |
+
|
217 |
+
with gr.Accordion("Prompt Settings", open=True):
|
218 |
+
|
219 |
+
input_text_component = gr.Textbox(
|
220 |
+
label="Inpaint prompt",
|
221 |
+
show_label=True,
|
222 |
+
max_lines=1,
|
223 |
+
placeholder="Enter your prompt",
|
224 |
+
)
|
225 |
+
trigger_word = gr.Textbox(
|
226 |
+
label="Lora trigger word",
|
227 |
+
show_label=True,
|
228 |
+
max_lines=1,
|
229 |
+
placeholder="Enter your lora trigger word here",
|
230 |
+
value="a photo of TOK"
|
231 |
+
|
232 |
+
)
|
233 |
+
|
234 |
+
submit_button_component = gr.Button(
|
235 |
+
value='Submit', variant='primary', scale=0)
|
236 |
+
|
237 |
+
with gr.Accordion("Lora Settings", open=True):
|
238 |
+
lora_path = gr.Textbox(
|
239 |
+
label="Lora model path",
|
240 |
+
show_label=True,
|
241 |
+
max_lines=1,
|
242 |
+
placeholder="Enter your model path",
|
243 |
+
info="Currently, only LoRA hosted on Hugging Face'model can be loaded properly.",
|
244 |
+
value="XLabs-AI/flux-RealismLora"
|
245 |
+
)
|
246 |
+
lora_weights = gr.Textbox(
|
247 |
+
label="Lora weights",
|
248 |
+
show_label=True,
|
249 |
+
max_lines=1,
|
250 |
+
placeholder="Enter your lora weights name",
|
251 |
+
value="lora.safetensors"
|
252 |
+
)
|
253 |
+
lora_scale = gr.Slider(
|
254 |
+
label="Lora scale",
|
255 |
+
show_label=True,
|
256 |
+
minimum=0,
|
257 |
+
maximum=1,
|
258 |
+
step=0.1,
|
259 |
+
value=0.9,
|
260 |
+
)
|
261 |
+
|
262 |
+
with gr.Accordion("Advanced Settings", open=True):
|
263 |
+
|
264 |
+
|
265 |
+
seed_slicer_component = gr.Slider(
|
266 |
+
label="Seed",
|
267 |
+
minimum=0,
|
268 |
+
maximum=MAX_SEED,
|
269 |
+
step=1,
|
270 |
+
value=42,
|
271 |
+
)
|
272 |
+
|
273 |
+
randomize_seed_checkbox_component = gr.Checkbox(
|
274 |
+
label="Randomize seed", value=True)
|
275 |
+
|
276 |
+
blur_mask = gr.Checkbox(
|
277 |
+
label="if blur mask", value=False)
|
278 |
+
blur_factor = gr.Slider(
|
279 |
+
label="blur factor",
|
280 |
+
minimum=0,
|
281 |
+
maximum=50,
|
282 |
+
step=1,
|
283 |
+
value=33,
|
284 |
+
)
|
285 |
+
with gr.Row():
|
286 |
+
strength_slider_component = gr.Slider(
|
287 |
+
label="Strength",
|
288 |
+
info="Indicates extent to transform the reference `image`. "
|
289 |
+
"Must be between 0 and 1. `image` is used as a starting "
|
290 |
+
"point and more noise is added the higher the `strength`.",
|
291 |
+
minimum=0,
|
292 |
+
maximum=1,
|
293 |
+
step=0.01,
|
294 |
+
value=0.85,
|
295 |
+
)
|
296 |
+
|
297 |
+
num_inference_steps_slider_component = gr.Slider(
|
298 |
+
label="Number of inference steps",
|
299 |
+
info="The number of denoising steps. More denoising steps "
|
300 |
+
"usually lead to a higher quality image at the",
|
301 |
+
minimum=1,
|
302 |
+
maximum=50,
|
303 |
+
step=1,
|
304 |
+
value=28,
|
305 |
+
)
|
306 |
+
with gr.Column():
|
307 |
+
output_image_component = ImageSlider(label="Generate image", type="pil", slider_color="pink")
|
308 |
+
|
309 |
+
with gr.Accordion("Debug", open=False):
|
310 |
+
output_mask_component = gr.Image(
|
311 |
+
type='pil', image_mode='RGB', label='Input mask', format="png")
|
312 |
+
|
313 |
+
submit_button_component.click(
|
314 |
+
fn=process,
|
315 |
+
inputs=[
|
316 |
+
input_image_editor_component,
|
317 |
+
image_url,
|
318 |
+
mask_url,
|
319 |
+
blur_mask,
|
320 |
+
blur_factor,
|
321 |
+
lora_path,
|
322 |
+
lora_weights,
|
323 |
+
lora_scale,
|
324 |
+
trigger_word,
|
325 |
+
input_text_component,
|
326 |
+
seed_slicer_component,
|
327 |
+
randomize_seed_checkbox_component,
|
328 |
+
strength_slider_component,
|
329 |
+
num_inference_steps_slider_component
|
330 |
+
],
|
331 |
+
outputs=[
|
332 |
+
output_image_component,
|
333 |
+
output_mask_component
|
334 |
+
]
|
335 |
+
)
|
336 |
+
|
337 |
+
demo.launch(debug=False, show_error=True)
|
requirements.txt
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
-
gradio
|
2 |
-
spaces
|
3 |
-
accelerate
|
4 |
-
transformers==4.42.4
|
5 |
-
sentencepiece
|
6 |
-
git+https://github.com/Gothos/diffusers.git@flux-inpaint
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
spaces
|
3 |
+
accelerate
|
4 |
+
transformers==4.42.4
|
5 |
+
sentencepiece
|
6 |
+
#git+https://github.com/Gothos/diffusers.git@flux-inpaint
|
7 |
+
diffusers
|
8 |
+
huggingface_hub
|
9 |
+
peft
|
10 |
+
gradio_imageslider
|
11 |
+
requests
|
12 |
+
numpy<2
|