fix
Browse files
app.py
CHANGED
@@ -13,6 +13,10 @@ import os
|
|
13 |
import time
|
14 |
from gradio_imageslider import ImageSlider
|
15 |
|
|
|
|
|
|
|
|
|
16 |
|
17 |
MARKDOWN = """
|
18 |
# FLUX.1 Inpainting with lora
|
@@ -25,7 +29,7 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
25 |
|
26 |
login(token=HF_TOKEN)
|
27 |
|
28 |
-
|
29 |
|
30 |
class calculateDuration:
|
31 |
def __init__(self, activity_name=""):
|
@@ -64,8 +68,15 @@ def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
|
|
64 |
image.putdata(new_data)
|
65 |
return image
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
def resize_image_dimensions(
|
@@ -144,6 +155,7 @@ def process(
|
|
144 |
strength=strength_slider,
|
145 |
generator=generator,
|
146 |
num_inference_steps=num_inference_steps_slider,
|
|
|
147 |
joint_attention_kwargs={"scale": lora_scale},
|
148 |
).images[0]
|
149 |
|
@@ -190,14 +202,14 @@ with gr.Blocks() as demo:
|
|
190 |
max_lines=1,
|
191 |
placeholder="Enter your model path",
|
192 |
info="Currently, only LoRA hosted on Hugging Face'model can be loaded properly.",
|
193 |
-
value="XLabs-AI/flux-
|
194 |
)
|
195 |
lora_weights = gr.Textbox(
|
196 |
label="Lora weights",
|
197 |
show_label=True,
|
198 |
max_lines=1,
|
199 |
placeholder="Enter your lora weights name",
|
200 |
-
value="
|
201 |
)
|
202 |
lora_scale = gr.Slider(
|
203 |
label="Lora scale",
|
@@ -241,7 +253,7 @@ with gr.Blocks() as demo:
|
|
241 |
minimum=1,
|
242 |
maximum=50,
|
243 |
step=1,
|
244 |
-
value=
|
245 |
)
|
246 |
with gr.Column():
|
247 |
output_image_component = ImageSlider(label="Generate image", type="pil", slider_color="pink")
|
|
|
13 |
import time
|
14 |
from gradio_imageslider import ImageSlider
|
15 |
|
16 |
+
from diffusers import FlowMatchEulerDiscreteScheduler, AutoencoderKL
|
17 |
+
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
18 |
+
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
|
19 |
+
|
20 |
|
21 |
MARKDOWN = """
|
22 |
# FLUX.1 Inpainting with lora
|
|
|
29 |
|
30 |
login(token=HF_TOKEN)
|
31 |
|
32 |
+
bfl_repo="black-forest-labs/FLUX.1-dev"
|
33 |
|
34 |
class calculateDuration:
|
35 |
def __init__(self, activity_name=""):
|
|
|
68 |
image.putdata(new_data)
|
69 |
return image
|
70 |
|
71 |
+
# text_encoder = CLIPTextModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/clip_l.safetensors"), torch_dtype=dtype)
|
72 |
+
# tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14", torch_dtype=dtype)
|
73 |
+
# text_encoder_2 = T5EncoderModel.from_pretrained(os.path.join(os.getcwd(), "flux_text_encoders/t5xxl_fp8_e4m3fn.safetensors"), torch_dtype=dtype)
|
74 |
+
# tokenizer_2 = T5TokenizerFast.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
|
75 |
+
# vae = AutoencoderKL.from_pretrained(bfl_repo, subfolder="vae", torch_dtype=dtype)
|
76 |
+
# transformer = FluxTransformer2DModel.from_pretrained(bfl_repo, subfolder="transformer", torch_dtype=dtype)
|
77 |
+
|
78 |
+
|
79 |
+
pipe = FluxInpaintPipeline.from_pretrained(bfl_repo, torch_dtype=torch.bfloat16).to(DEVICE)
|
80 |
|
81 |
|
82 |
def resize_image_dimensions(
|
|
|
155 |
strength=strength_slider,
|
156 |
generator=generator,
|
157 |
num_inference_steps=num_inference_steps_slider,
|
158 |
+
max_sequence_length=256,
|
159 |
joint_attention_kwargs={"scale": lora_scale},
|
160 |
).images[0]
|
161 |
|
|
|
202 |
max_lines=1,
|
203 |
placeholder="Enter your model path",
|
204 |
info="Currently, only LoRA hosted on Hugging Face'model can be loaded properly.",
|
205 |
+
value="XLabs-AI/flux-RealismLora"
|
206 |
)
|
207 |
lora_weights = gr.Textbox(
|
208 |
label="Lora weights",
|
209 |
show_label=True,
|
210 |
max_lines=1,
|
211 |
placeholder="Enter your lora weights name",
|
212 |
+
value="lora.safetensors"
|
213 |
)
|
214 |
lora_scale = gr.Slider(
|
215 |
label="Lora scale",
|
|
|
253 |
minimum=1,
|
254 |
maximum=50,
|
255 |
step=1,
|
256 |
+
value=28,
|
257 |
)
|
258 |
with gr.Column():
|
259 |
output_image_component = ImageSlider(label="Generate image", type="pil", slider_color="pink")
|