File size: 7,591 Bytes
635f007 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import math
import torch
from torch import nn
from torch.nn import TransformerEncoder
import torch.nn.functional as F
from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
class ASRCNN(nn.Module):
def __init__(
self,
input_dim=80,
hidden_dim=256,
n_token=35,
n_layers=6,
token_embedding_dim=256,
):
super().__init__()
self.n_token = n_token
self.n_down = 1
self.to_mfcc = MFCC()
self.init_cnn = ConvNorm(
input_dim // 2, hidden_dim, kernel_size=7, padding=3, stride=2
)
self.cnns = nn.Sequential(
*[
nn.Sequential(
ConvBlock(hidden_dim),
nn.GroupNorm(num_groups=1, num_channels=hidden_dim),
)
for n in range(n_layers)
]
)
self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
self.ctc_linear = nn.Sequential(
LinearNorm(hidden_dim // 2, hidden_dim),
nn.ReLU(),
LinearNorm(hidden_dim, n_token),
)
self.asr_s2s = ASRS2S(
embedding_dim=token_embedding_dim,
hidden_dim=hidden_dim // 2,
n_token=n_token,
)
def forward(self, x, src_key_padding_mask=None, text_input=None):
x = self.to_mfcc(x)
x = self.init_cnn(x)
x = self.cnns(x)
x = self.projection(x)
x = x.transpose(1, 2)
ctc_logit = self.ctc_linear(x)
if text_input is not None:
_, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
return ctc_logit, s2s_logit, s2s_attn
else:
return ctc_logit
def get_feature(self, x):
x = self.to_mfcc(x.squeeze(1))
x = self.init_cnn(x)
x = self.cnns(x)
x = self.projection(x)
return x
def length_to_mask(self, lengths):
mask = (
torch.arange(lengths.max())
.unsqueeze(0)
.expand(lengths.shape[0], -1)
.type_as(lengths)
)
mask = torch.gt(mask + 1, lengths.unsqueeze(1)).to(lengths.device)
return mask
def get_future_mask(self, out_length, unmask_future_steps=0):
"""
Args:
out_length (int): returned mask shape is (out_length, out_length).
unmask_futre_steps (int): unmasking future step size.
Return:
mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
"""
index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
return mask
class ASRS2S(nn.Module):
def __init__(
self,
embedding_dim=256,
hidden_dim=512,
n_location_filters=32,
location_kernel_size=63,
n_token=40,
):
super(ASRS2S, self).__init__()
self.embedding = nn.Embedding(n_token, embedding_dim)
val_range = math.sqrt(6 / hidden_dim)
self.embedding.weight.data.uniform_(-val_range, val_range)
self.decoder_rnn_dim = hidden_dim
self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
self.attention_layer = Attention(
self.decoder_rnn_dim,
hidden_dim,
hidden_dim,
n_location_filters,
location_kernel_size,
)
self.decoder_rnn = nn.LSTMCell(
self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim
)
self.project_to_hidden = nn.Sequential(
LinearNorm(self.decoder_rnn_dim * 2, hidden_dim), nn.Tanh()
)
self.sos = 1
self.eos = 2
def initialize_decoder_states(self, memory, mask):
"""
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
"""
B, L, H = memory.shape
self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
self.attention_weights = torch.zeros((B, L)).type_as(memory)
self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
self.attention_context = torch.zeros((B, H)).type_as(memory)
self.memory = memory
self.processed_memory = self.attention_layer.memory_layer(memory)
self.mask = mask
self.unk_index = 3
self.random_mask = 0.1
def forward(self, memory, memory_mask, text_input):
"""
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
moemory_mask.shape = (B, L, )
texts_input.shape = (B, T)
"""
self.initialize_decoder_states(memory, memory_mask)
# text random mask
random_mask = (torch.rand(text_input.shape) < self.random_mask).to(
text_input.device
)
_text_input = text_input.clone()
_text_input.masked_fill_(random_mask, self.unk_index)
decoder_inputs = self.embedding(_text_input).transpose(
0, 1
) # -> [T, B, channel]
start_embedding = self.embedding(
torch.LongTensor([self.sos] * decoder_inputs.size(1)).to(
decoder_inputs.device
)
)
decoder_inputs = torch.cat(
(start_embedding.unsqueeze(0), decoder_inputs), dim=0
)
hidden_outputs, logit_outputs, alignments = [], [], []
while len(hidden_outputs) < decoder_inputs.size(0):
decoder_input = decoder_inputs[len(hidden_outputs)]
hidden, logit, attention_weights = self.decode(decoder_input)
hidden_outputs += [hidden]
logit_outputs += [logit]
alignments += [attention_weights]
hidden_outputs, logit_outputs, alignments = self.parse_decoder_outputs(
hidden_outputs, logit_outputs, alignments
)
return hidden_outputs, logit_outputs, alignments
def decode(self, decoder_input):
cell_input = torch.cat((decoder_input, self.attention_context), -1)
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
cell_input, (self.decoder_hidden, self.decoder_cell)
)
attention_weights_cat = torch.cat(
(
self.attention_weights.unsqueeze(1),
self.attention_weights_cum.unsqueeze(1),
),
dim=1,
)
self.attention_context, self.attention_weights = self.attention_layer(
self.decoder_hidden,
self.memory,
self.processed_memory,
attention_weights_cat,
self.mask,
)
self.attention_weights_cum += self.attention_weights
hidden_and_context = torch.cat(
(self.decoder_hidden, self.attention_context), -1
)
hidden = self.project_to_hidden(hidden_and_context)
# dropout to increasing g
logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
return hidden, logit, self.attention_weights
def parse_decoder_outputs(self, hidden, logit, alignments):
# -> [B, T_out + 1, max_time]
alignments = torch.stack(alignments).transpose(0, 1)
# [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
logit = torch.stack(logit).transpose(0, 1).contiguous()
hidden = torch.stack(hidden).transpose(0, 1).contiguous()
return hidden, logit, alignments
|