import os import gradio as gr from huggingface_hub import login import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Load the gated model #model_name = "RickyDeSkywalker/TheoremLlama" #model_name = "internlm/internlm2-math-plus-7b" #model_name = "deepseek-ai/DeepSeek-Prover-V1.5-RL" model_name = "unsloth/Llama-3.2-1B-Instruct" HF_TOKEN = os.environ.get("HF_TOKEN") #login(HF_TOKEN) tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto").eval() # Function for generating Lean 4 code @torch.inference_mode() def generate_lean4_code(prompt: str): terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>"), tokenizer.convert_tokens_to_ids("<|reserved_special_token_26|>")] chat = [ {"role": "system", "content": "You are a Lean4 expert who can write good Lean4 code based on natural language mathematical theorem and proof"}, {"role": "user", "content": prompt}, ] input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(model.device) results = model.generate(input_ids, max_new_tokens=1024, eos_token_id=terminators, do_sample=True, temperature=0.85, top_p=0.9) result_str = tokenizer.decode(results[0], skip_special_tokens=True) return result_str # Gradio Interface title = "Lean 4 Code Generation with TheoremLlama" description = "Enter a natural language prompt to generate Lean 4 code." interface = gr.Interface( fn=generate_lean4_code, inputs=gr.Textbox( label="Prompt", placeholder="Prove that the sum of two even numbers is even.", lines=4 ), outputs=gr.Code(label="Generated Lean 4 Code"), # language="lean" unsupported in Gradio... title=title, description=description ) # Launch the Gradio app interface.queue().launch(ssr_mode=False)