JohnSmith9982's picture
Upload 166 files
458ae42 verified
raw
history blame
42.8 kB
from __future__ import annotations
import asyncio
import json
import logging
import os
import pathlib
import shutil
import sys
import traceback
from collections import deque
from enum import Enum
from itertools import islice
from threading import Condition, Thread
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
import aiohttp
import colorama
import commentjson as cjson
import requests
import urllib3
from duckduckgo_search import DDGS
from huggingface_hub import hf_hub_download
from langchain.callbacks.base import BaseCallbackHandler, BaseCallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.chat_models.base import BaseChatModel
from langchain.input import print_text
from langchain.schema import (AgentAction, AgentFinish, AIMessage, BaseMessage,
HumanMessage, LLMResult, SystemMessage)
from tqdm import tqdm
from .. import shared
from ..config import retrieve_proxy
from ..index_func import *
from ..presets import *
from ..utils import *
class CallbackToIterator:
def __init__(self):
self.queue = deque()
self.cond = Condition()
self.finished = False
def callback(self, result):
with self.cond:
self.queue.append(result)
self.cond.notify() # Wake up the generator.
def __iter__(self):
return self
def __next__(self):
with self.cond:
# Wait for a value to be added to the queue.
while not self.queue and not self.finished:
self.cond.wait()
if not self.queue:
raise StopIteration()
return self.queue.popleft()
def finish(self):
with self.cond:
self.finished = True
self.cond.notify() # Wake up the generator if it's waiting.
def get_action_description(text):
match = re.search("```(.*?)```", text, re.S)
json_text = match.group(1)
# 把json转化为python字典
json_dict = json.loads(json_text)
# 提取'action'和'action_input'的值
action_name = json_dict["action"]
action_input = json_dict["action_input"]
if action_name != "Final Answer":
return f'<!-- S O PREFIX --><p class="agent-prefix">{action_name}: {action_input}\n</p><!-- E O PREFIX -->'
else:
return ""
class ChuanhuCallbackHandler(BaseCallbackHandler):
def __init__(self, callback) -> None:
"""Initialize callback handler."""
self.callback = callback
def on_agent_action(
self, action: AgentAction, color: Optional[str] = None, **kwargs: Any
) -> Any:
self.callback(get_action_description(action.log))
def on_tool_end(
self,
output: str,
color: Optional[str] = None,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
"""If not the final action, print out observation."""
# if observation_prefix is not None:
# self.callback(f"\n\n{observation_prefix}")
# self.callback(output)
# if llm_prefix is not None:
# self.callback(f"\n\n{llm_prefix}")
if observation_prefix is not None:
logging.info(observation_prefix)
self.callback(output)
if llm_prefix is not None:
logging.info(llm_prefix)
def on_agent_finish(
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
) -> None:
# self.callback(f"{finish.log}\n\n")
logging.info(finish.log)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
self.callback(token)
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any,
) -> Any:
"""Run when a chat model starts running."""
pass
class ModelType(Enum):
Unknown = -1
OpenAI = 0
ChatGLM = 1
LLaMA = 2
XMChat = 3
StableLM = 4
MOSS = 5
YuanAI = 6
Minimax = 7
ChuanhuAgent = 8
GooglePaLM = 9
LangchainChat = 10
Midjourney = 11
Spark = 12
OpenAIInstruct = 13
Claude = 14
Qwen = 15
OpenAIVision = 16
ERNIE = 17
DALLE3 = 18
GoogleGemini = 19
GoogleGemma = 20
Ollama = 21
@classmethod
def get_type(cls, model_name: str):
model_type = None
model_name_lower = model_name.lower()
if "gpt" in model_name_lower:
if "instruct" in model_name_lower:
model_type = ModelType.OpenAIInstruct
elif "vision" in model_name_lower:
model_type = ModelType.OpenAIVision
else:
model_type = ModelType.OpenAI
elif "chatglm" in model_name_lower:
model_type = ModelType.ChatGLM
elif "ollama" in model_name_lower:
model_type = ModelType.Ollama
elif "llama" in model_name_lower or "alpaca" in model_name_lower:
model_type = ModelType.LLaMA
elif "xmchat" in model_name_lower:
model_type = ModelType.XMChat
elif "stablelm" in model_name_lower:
model_type = ModelType.StableLM
elif "moss" in model_name_lower:
model_type = ModelType.MOSS
elif "yuanai" in model_name_lower:
model_type = ModelType.YuanAI
elif "minimax" in model_name_lower:
model_type = ModelType.Minimax
elif "川虎助理" in model_name_lower:
model_type = ModelType.ChuanhuAgent
elif "palm" in model_name_lower:
model_type = ModelType.GooglePaLM
elif "gemini" in model_name_lower:
model_type = ModelType.GoogleGemini
elif "midjourney" in model_name_lower:
model_type = ModelType.Midjourney
elif "azure" in model_name_lower or "api" in model_name_lower:
model_type = ModelType.LangchainChat
elif "星火大模型" in model_name_lower:
model_type = ModelType.Spark
elif "claude" in model_name_lower:
model_type = ModelType.Claude
elif "qwen" in model_name_lower:
model_type = ModelType.Qwen
elif "ernie" in model_name_lower:
model_type = ModelType.ERNIE
elif "dall" in model_name_lower:
model_type = ModelType.DALLE3
elif "gemma" in model_name_lower:
model_type = ModelType.GoogleGemma
else:
model_type = ModelType.LLaMA
return model_type
def download(repo_id, filename, retry=10):
if os.path.exists("./models/downloaded_models.json"):
with open("./models/downloaded_models.json", "r") as f:
downloaded_models = json.load(f)
if repo_id in downloaded_models:
return downloaded_models[repo_id]["path"]
else:
downloaded_models = {}
while retry > 0:
try:
model_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir="models",
resume_download=True,
)
downloaded_models[repo_id] = {"path": model_path}
with open("./models/downloaded_models.json", "w") as f:
json.dump(downloaded_models, f)
break
except:
print("Error downloading model, retrying...")
retry -= 1
if retry == 0:
raise Exception("Error downloading model, please try again later.")
return model_path
class BaseLLMModel:
def __init__(
self,
model_name,
system_prompt=INITIAL_SYSTEM_PROMPT,
temperature=1.0,
top_p=1.0,
n_choices=1,
stop="",
max_generation_token=None,
presence_penalty=0,
frequency_penalty=0,
logit_bias=None,
user="",
single_turn=False,
) -> None:
self.history = []
self.all_token_counts = []
try:
self.model_name = MODEL_METADATA[model_name]["model_name"]
except:
self.model_name = model_name
self.model_type = ModelType.get_type(model_name)
try:
self.token_upper_limit = MODEL_METADATA[model_name]["token_limit"]
except KeyError:
self.token_upper_limit = DEFAULT_TOKEN_LIMIT
self.interrupted = False
self.system_prompt = system_prompt
self.api_key = None
self.need_api_key = False
self.history_file_path = get_first_history_name(user)
self.user_name = user
self.chatbot = []
self.default_single_turn = single_turn
self.default_temperature = temperature
self.default_top_p = top_p
self.default_n_choices = n_choices
self.default_stop_sequence = stop
self.default_max_generation_token = max_generation_token
self.default_presence_penalty = presence_penalty
self.default_frequency_penalty = frequency_penalty
self.default_logit_bias = logit_bias
self.default_user_identifier = user
self.single_turn = single_turn
self.temperature = temperature
self.top_p = top_p
self.n_choices = n_choices
self.stop_sequence = stop
self.max_generation_token = max_generation_token
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.logit_bias = logit_bias
self.user_identifier = user
self.metadata = {}
def get_answer_stream_iter(self):
"""Implement stream prediction.
Conversations are stored in self.history, with the most recent question in OpenAI format.
Should return a generator that yields the next word (str) in the answer.
"""
logging.warning(
"Stream prediction is not implemented. Using at once prediction instead."
)
response, _ = self.get_answer_at_once()
yield response
def get_answer_at_once(self):
"""predict at once, need to be implemented
conversations are stored in self.history, with the most recent question, in OpenAI format
Should return:
the answer (str)
total token count (int)
"""
logging.warning("at once predict not implemented, using stream predict instead")
response_iter = self.get_answer_stream_iter()
count = 0
for response in response_iter:
count += 1
return response, sum(self.all_token_counts) + count
def billing_info(self):
"""get billing infomation, inplement if needed"""
# logging.warning("billing info not implemented, using default")
return BILLING_NOT_APPLICABLE_MSG
def count_token(self, user_input):
"""get token count from input, implement if needed"""
# logging.warning("token count not implemented, using default")
return len(user_input)
def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""):
def get_return_value():
return chatbot, status_text
status_text = i18n("开始实时传输回答……")
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
user_token_count = self.count_token(inputs)
self.all_token_counts.append(user_token_count)
logging.debug(f"输入token计数: {user_token_count}")
stream_iter = self.get_answer_stream_iter()
if display_append:
display_append = (
'\n\n<hr class="append-display no-in-raw" />' + display_append
)
partial_text = ""
token_increment = 1
for partial_text in stream_iter:
if type(partial_text) == tuple:
partial_text, token_increment = partial_text
chatbot[-1] = (chatbot[-1][0], partial_text + display_append)
self.all_token_counts[-1] += token_increment
status_text = self.token_message()
yield get_return_value()
if self.interrupted:
self.recover()
break
self.history.append(construct_assistant(partial_text))
def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""):
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
if fake_input is not None:
user_token_count = self.count_token(fake_input)
else:
user_token_count = self.count_token(inputs)
self.all_token_counts.append(user_token_count)
ai_reply, total_token_count = self.get_answer_at_once()
self.history.append(construct_assistant(ai_reply))
if fake_input is not None:
self.history[-2] = construct_user(fake_input)
chatbot[-1] = (chatbot[-1][0], ai_reply + display_append)
if fake_input is not None:
self.all_token_counts[-1] += count_token(construct_assistant(ai_reply))
else:
self.all_token_counts[-1] = total_token_count - sum(self.all_token_counts)
status_text = self.token_message()
return chatbot, status_text
def handle_file_upload(self, files, chatbot, language):
"""if the model accepts multi modal input, implement this function"""
status = gr.Markdown.update()
if files:
try:
construct_index(self.api_key, file_src=files)
status = i18n("索引构建完成")
except Exception as e:
import traceback
traceback.print_exc()
status = i18n("索引构建失败!") + str(e)
return gr.Files.update(), chatbot, status
def summarize_index(self, files, chatbot, language):
status = gr.Markdown.update()
if files:
index = construct_index(self.api_key, file_src=files)
status = i18n("总结完成")
logging.info(i18n("生成内容总结中……"))
os.environ["OPENAI_API_KEY"] = self.api_key
from langchain.callbacks import StdOutCallbackHandler
from langchain.chains.summarize import load_summarize_chain
from langchain.chat_models import ChatOpenAI
from langchain.prompts import PromptTemplate
prompt_template = (
"Write a concise summary of the following:\n\n{text}\n\nCONCISE SUMMARY IN "
+ language
+ ":"
)
PROMPT = PromptTemplate(template=prompt_template, input_variables=["text"])
llm = ChatOpenAI()
chain = load_summarize_chain(
llm,
chain_type="map_reduce",
return_intermediate_steps=True,
map_prompt=PROMPT,
combine_prompt=PROMPT,
)
summary = chain(
{"input_documents": list(index.docstore.__dict__["_dict"].values())},
return_only_outputs=True,
)["output_text"]
print(i18n("总结") + f": {summary}")
chatbot.append([i18n("上传了") + str(len(files)) + "个文件", summary])
return chatbot, status
def prepare_inputs(
self,
real_inputs,
use_websearch,
files,
reply_language,
chatbot,
load_from_cache_if_possible=True,
):
display_append = []
limited_context = False
if type(real_inputs) == list:
fake_inputs = real_inputs[0]["text"]
else:
fake_inputs = real_inputs
if files:
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores.base import VectorStoreRetriever
limited_context = True
msg = "加载索引中……"
logging.info(msg)
index = construct_index(
self.api_key,
file_src=files,
load_from_cache_if_possible=load_from_cache_if_possible,
)
assert index is not None, "获取索引失败"
msg = "索引获取成功,生成回答中……"
logging.info(msg)
with retrieve_proxy():
retriever = VectorStoreRetriever(
vectorstore=index, search_type="similarity", search_kwargs={"k": 6}
)
# retriever = VectorStoreRetriever(vectorstore=index, search_type="similarity_score_threshold", search_kwargs={
# "k": 6, "score_threshold": 0.2})
try:
relevant_documents = retriever.get_relevant_documents(fake_inputs)
except AssertionError:
return self.prepare_inputs(
fake_inputs,
use_websearch,
files,
reply_language,
chatbot,
load_from_cache_if_possible=False,
)
reference_results = [
[d.page_content.strip("�"), os.path.basename(d.metadata["source"])]
for d in relevant_documents
]
reference_results = add_source_numbers(reference_results)
display_append = add_details(reference_results)
display_append = "\n\n" + "".join(display_append)
if type(real_inputs) == list:
real_inputs[0]["text"] = (
replace_today(PROMPT_TEMPLATE)
.replace("{query_str}", fake_inputs)
.replace("{context_str}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
real_inputs = (
replace_today(PROMPT_TEMPLATE)
.replace("{query_str}", real_inputs)
.replace("{context_str}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
elif use_websearch:
search_results = []
with retrieve_proxy() as proxy:
if proxy[0] or proxy[1]:
proxies = {}
if proxy[0]:
proxies["http"] = proxy[0]
if proxy[1]:
proxies["https"] = proxy[1]
else:
proxies = None
with DDGS(proxies=proxies) as ddgs:
ddgs_gen = ddgs.text(fake_inputs, backend="lite")
for r in islice(ddgs_gen, 10):
search_results.append(r)
reference_results = []
for idx, result in enumerate(search_results):
logging.debug(f"搜索结果{idx + 1}{result}")
domain_name = urllib3.util.parse_url(result["href"]).host
reference_results.append([result["body"], result["href"]])
display_append.append(
# f"{idx+1}. [{domain_name}]({result['href']})\n"
f"<a href=\"{result['href']}\" target=\"_blank\">{idx+1}.&nbsp;{result['title']}</a>"
)
reference_results = add_source_numbers(reference_results)
# display_append = "<ol>\n\n" + "".join(display_append) + "</ol>"
display_append = (
'<div class = "source-a">' + "".join(display_append) + "</div>"
)
if type(real_inputs) == list:
real_inputs[0]["text"] = (
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
.replace("{query}", fake_inputs)
.replace("{web_results}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
real_inputs = (
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
.replace("{query}", fake_inputs)
.replace("{web_results}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
display_append = ""
return limited_context, fake_inputs, display_append, real_inputs, chatbot
def predict(
self,
inputs,
chatbot,
stream=False,
use_websearch=False,
files=None,
reply_language="中文",
should_check_token_count=True,
): # repetition_penalty, top_k
status_text = "开始生成回答……"
if type(inputs) == list:
logging.info(
"用户"
+ f"{self.user_name}"
+ "的输入为:"
+ colorama.Fore.BLUE
+ "("
+ str(len(inputs) - 1)
+ " images) "
+ f"{inputs[0]['text']}"
+ colorama.Style.RESET_ALL
)
else:
logging.info(
"用户"
+ f"{self.user_name}"
+ "的输入为:"
+ colorama.Fore.BLUE
+ f"{inputs}"
+ colorama.Style.RESET_ALL
)
if should_check_token_count:
if type(inputs) == list:
yield chatbot + [(inputs[0]["text"], "")], status_text
else:
yield chatbot + [(inputs, "")], status_text
if reply_language == "跟随问题语言(不稳定)":
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
(
limited_context,
fake_inputs,
display_append,
inputs,
chatbot,
) = self.prepare_inputs(
real_inputs=inputs,
use_websearch=use_websearch,
files=files,
reply_language=reply_language,
chatbot=chatbot,
)
yield chatbot + [(fake_inputs, "")], status_text
if (
self.need_api_key
and self.api_key is None
and not shared.state.multi_api_key
):
status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG
logging.info(status_text)
chatbot.append((fake_inputs, ""))
if len(self.history) == 0:
self.history.append(construct_user(fake_inputs))
self.history.append("")
self.all_token_counts.append(0)
else:
self.history[-2] = construct_user(fake_inputs)
yield chatbot + [(fake_inputs, "")], status_text
return
elif len(fake_inputs.strip()) == 0:
status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG
logging.info(status_text)
yield chatbot + [(fake_inputs, "")], status_text
return
if self.single_turn:
self.history = []
self.all_token_counts = []
if type(inputs) == list:
self.history.append(inputs)
else:
self.history.append(construct_user(inputs))
try:
if stream:
logging.debug("使用流式传输")
iter = self.stream_next_chatbot(
inputs,
chatbot,
fake_input=fake_inputs,
display_append=display_append,
)
for chatbot, status_text in iter:
yield chatbot, status_text
else:
logging.debug("不使用流式传输")
chatbot, status_text = self.next_chatbot_at_once(
inputs,
chatbot,
fake_input=fake_inputs,
display_append=display_append,
)
yield chatbot, status_text
except Exception as e:
traceback.print_exc()
status_text = STANDARD_ERROR_MSG + beautify_err_msg(str(e))
yield chatbot, status_text
if len(self.history) > 1 and self.history[-1]["content"] != fake_inputs:
logging.info(
"回答为:"
+ colorama.Fore.BLUE
+ f"{self.history[-1]['content']}"
+ colorama.Style.RESET_ALL
)
if limited_context:
# self.history = self.history[-4:]
# self.all_token_counts = self.all_token_counts[-2:]
self.history = []
self.all_token_counts = []
max_token = self.token_upper_limit - TOKEN_OFFSET
if sum(self.all_token_counts) > max_token and should_check_token_count:
count = 0
while (
sum(self.all_token_counts)
> self.token_upper_limit * REDUCE_TOKEN_FACTOR
and sum(self.all_token_counts) > 0
):
count += 1
del self.all_token_counts[0]
del self.history[:2]
logging.info(status_text)
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话"
yield chatbot, status_text
self.chatbot = chatbot
self.auto_save(chatbot)
def retry(
self,
chatbot,
stream=False,
use_websearch=False,
files=None,
reply_language="中文",
):
logging.debug("重试中……")
if len(self.history) > 1:
inputs = self.history[-2]["content"]
del self.history[-2:]
if len(self.all_token_counts) > 0:
self.all_token_counts.pop()
elif len(chatbot) > 0:
inputs = chatbot[-1][0]
if '<div class="user-message">' in inputs:
inputs = inputs.split('<div class="user-message">')[1]
inputs = inputs.split("</div>")[0]
elif len(self.history) == 1:
inputs = self.history[-1]["content"]
del self.history[-1]
else:
yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的"
return
iter = self.predict(
inputs,
chatbot,
stream=stream,
use_websearch=use_websearch,
files=files,
reply_language=reply_language,
)
for x in iter:
yield x
logging.debug("重试完毕")
# def reduce_token_size(self, chatbot):
# logging.info("开始减少token数量……")
# chatbot, status_text = self.next_chatbot_at_once(
# summarize_prompt,
# chatbot
# )
# max_token_count = self.token_upper_limit * REDUCE_TOKEN_FACTOR
# num_chat = find_n(self.all_token_counts, max_token_count)
# logging.info(f"previous_token_count: {self.all_token_counts}, keeping {num_chat} chats")
# chatbot = chatbot[:-1]
# self.history = self.history[-2*num_chat:] if num_chat > 0 else []
# self.all_token_counts = self.all_token_counts[-num_chat:] if num_chat > 0 else []
# msg = f"保留了最近{num_chat}轮对话"
# logging.info(msg)
# logging.info("减少token数量完毕")
# return chatbot, msg + "," + self.token_message(self.all_token_counts if len(self.all_token_counts) > 0 else [0])
def interrupt(self):
self.interrupted = True
def recover(self):
self.interrupted = False
def set_token_upper_limit(self, new_upper_limit):
self.token_upper_limit = new_upper_limit
self.auto_save()
def set_temperature(self, new_temperature):
self.temperature = new_temperature
self.auto_save()
def set_top_p(self, new_top_p):
self.top_p = new_top_p
self.auto_save()
def set_n_choices(self, new_n_choices):
self.n_choices = new_n_choices
self.auto_save()
def set_stop_sequence(self, new_stop_sequence: str):
new_stop_sequence = new_stop_sequence.split(",")
self.stop_sequence = new_stop_sequence
self.auto_save()
def set_max_tokens(self, new_max_tokens):
self.max_generation_token = new_max_tokens
self.auto_save()
def set_presence_penalty(self, new_presence_penalty):
self.presence_penalty = new_presence_penalty
self.auto_save()
def set_frequency_penalty(self, new_frequency_penalty):
self.frequency_penalty = new_frequency_penalty
self.auto_save()
def set_logit_bias(self, logit_bias):
self.logit_bias = logit_bias
self.auto_save()
def encoded_logit_bias(self):
if self.logit_bias is None:
return {}
logit_bias = self.logit_bias.split()
bias_map = {}
encoding = tiktoken.get_encoding("cl100k_base")
for line in logit_bias:
word, bias_amount = line.split(":")
if word:
for token in encoding.encode(word):
bias_map[token] = float(bias_amount)
return bias_map
def set_user_identifier(self, new_user_identifier):
self.user_identifier = new_user_identifier
self.auto_save()
def set_system_prompt(self, new_system_prompt):
self.system_prompt = new_system_prompt
self.auto_save()
def set_key(self, new_access_key):
if "*" not in new_access_key:
self.api_key = new_access_key.strip()
msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key)
logging.info(msg)
return self.api_key, msg
else:
return gr.update(), gr.update()
def set_single_turn(self, new_single_turn):
self.single_turn = new_single_turn
self.auto_save()
def reset(self, remain_system_prompt=False):
self.history = []
self.all_token_counts = []
self.interrupted = False
self.history_file_path = new_auto_history_filename(self.user_name)
history_name = self.history_file_path[:-5]
choices = get_history_names(self.user_name)
if history_name not in choices:
choices.insert(0, history_name)
system_prompt = self.system_prompt if remain_system_prompt else ""
self.single_turn = self.default_single_turn
self.temperature = self.default_temperature
self.top_p = self.default_top_p
self.n_choices = self.default_n_choices
self.stop_sequence = self.default_stop_sequence
self.max_generation_token = self.default_max_generation_token
self.presence_penalty = self.default_presence_penalty
self.frequency_penalty = self.default_frequency_penalty
self.logit_bias = self.default_logit_bias
self.user_identifier = self.default_user_identifier
return (
[],
self.token_message([0]),
gr.Radio.update(choices=choices, value=history_name),
system_prompt,
self.single_turn,
self.temperature,
self.top_p,
self.n_choices,
self.stop_sequence,
self.token_upper_limit,
self.max_generation_token,
self.presence_penalty,
self.frequency_penalty,
self.logit_bias,
self.user_identifier,
)
def delete_first_conversation(self):
if self.history:
del self.history[:2]
del self.all_token_counts[0]
return self.token_message()
def delete_last_conversation(self, chatbot):
if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]:
msg = "由于包含报错信息,只删除chatbot记录"
chatbot = chatbot[:-1]
return chatbot, self.history
if len(self.history) > 0:
self.history = self.history[:-2]
if len(chatbot) > 0:
msg = "删除了一组chatbot对话"
chatbot = chatbot[:-1]
if len(self.all_token_counts) > 0:
msg = "删除了一组对话的token计数记录"
self.all_token_counts.pop()
msg = "删除了一组对话"
self.chatbot = chatbot
self.auto_save(chatbot)
return chatbot, msg
def token_message(self, token_lst=None):
if token_lst is None:
token_lst = self.all_token_counts
token_sum = 0
for i in range(len(token_lst)):
token_sum += sum(token_lst[: i + 1])
return (
i18n("Token 计数: ")
+ f"{sum(token_lst)}"
+ i18n(",本次对话累计消耗了 ")
+ f"{token_sum} tokens"
)
def rename_chat_history(self, filename, chatbot):
if filename == "":
return gr.update()
if not filename.endswith(".json"):
filename += ".json"
self.delete_chat_history(self.history_file_path)
# 命名重复检测
repeat_file_index = 2
full_path = os.path.join(HISTORY_DIR, self.user_name, filename)
while os.path.exists(full_path):
full_path = os.path.join(
HISTORY_DIR, self.user_name, f"{repeat_file_index}_{filename}"
)
repeat_file_index += 1
filename = os.path.basename(full_path)
self.history_file_path = filename
save_file(filename, self, chatbot)
return init_history_list(self.user_name)
def auto_name_chat_history(
self, name_chat_method, user_question, chatbot, single_turn_checkbox
):
if len(self.history) == 2 and not single_turn_checkbox:
user_question = self.history[0]["content"]
if type(user_question) == list:
user_question = user_question[0]["text"]
filename = replace_special_symbols(user_question)[:16] + ".json"
return self.rename_chat_history(filename, chatbot)
else:
return gr.update()
def auto_save(self, chatbot=None):
if chatbot is not None:
save_file(self.history_file_path, self, chatbot)
def export_markdown(self, filename, chatbot):
if filename == "":
return
if not filename.endswith(".md"):
filename += ".md"
save_file(filename, self, chatbot)
def load_chat_history(self, new_history_file_path=None):
logging.debug(f"{self.user_name} 加载对话历史中……")
if new_history_file_path is not None:
if type(new_history_file_path) != str:
# copy file from new_history_file_path.name to os.path.join(HISTORY_DIR, self.user_name)
new_history_file_path = new_history_file_path.name
shutil.copyfile(
new_history_file_path,
os.path.join(
HISTORY_DIR,
self.user_name,
os.path.basename(new_history_file_path),
),
)
self.history_file_path = os.path.basename(new_history_file_path)
else:
self.history_file_path = new_history_file_path
try:
if self.history_file_path == os.path.basename(self.history_file_path):
history_file_path = os.path.join(
HISTORY_DIR, self.user_name, self.history_file_path
)
else:
history_file_path = self.history_file_path
if not self.history_file_path.endswith(".json"):
history_file_path += ".json"
with open(history_file_path, "r", encoding="utf-8") as f:
saved_json = json.load(f)
try:
if type(saved_json["history"][0]) == str:
logging.info("历史记录格式为旧版,正在转换……")
new_history = []
for index, item in enumerate(saved_json["history"]):
if index % 2 == 0:
new_history.append(construct_user(item))
else:
new_history.append(construct_assistant(item))
saved_json["history"] = new_history
logging.info(new_history)
except:
pass
if len(saved_json["chatbot"]) < len(saved_json["history"]) // 2:
logging.info("Trimming corrupted history...")
saved_json["history"] = saved_json["history"][
-len(saved_json["chatbot"]) :
]
logging.info(f"Trimmed history: {saved_json['history']}")
logging.debug(f"{self.user_name} 加载对话历史完毕")
self.history = saved_json["history"]
self.single_turn = saved_json.get("single_turn", self.single_turn)
self.temperature = saved_json.get("temperature", self.temperature)
self.top_p = saved_json.get("top_p", self.top_p)
self.n_choices = saved_json.get("n_choices", self.n_choices)
self.stop_sequence = list(saved_json.get("stop_sequence", self.stop_sequence))
self.token_upper_limit = saved_json.get(
"token_upper_limit", self.token_upper_limit
)
self.max_generation_token = saved_json.get(
"max_generation_token", self.max_generation_token
)
self.presence_penalty = saved_json.get(
"presence_penalty", self.presence_penalty
)
self.frequency_penalty = saved_json.get(
"frequency_penalty", self.frequency_penalty
)
self.logit_bias = saved_json.get("logit_bias", self.logit_bias)
self.user_identifier = saved_json.get("user_identifier", self.user_name)
self.metadata = saved_json.get("metadata", self.metadata)
self.chatbot = saved_json["chatbot"]
return (
os.path.basename(self.history_file_path)[:-5],
saved_json["system"],
saved_json["chatbot"],
self.single_turn,
self.temperature,
self.top_p,
self.n_choices,
",".join(self.stop_sequence),
self.token_upper_limit,
self.max_generation_token,
self.presence_penalty,
self.frequency_penalty,
self.logit_bias,
self.user_identifier,
)
except:
# 没有对话历史或者对话历史解析失败
logging.info(f"没有找到对话历史记录 {self.history_file_path}")
self.reset()
return (
os.path.basename(self.history_file_path),
"",
[],
self.single_turn,
self.temperature,
self.top_p,
self.n_choices,
",".join(self.stop_sequence),
self.token_upper_limit,
self.max_generation_token,
self.presence_penalty,
self.frequency_penalty,
self.logit_bias,
self.user_identifier,
)
def delete_chat_history(self, filename):
if filename == "CANCELED":
return gr.update(), gr.update(), gr.update()
if filename == "":
return i18n("你没有选择任何对话历史"), gr.update(), gr.update()
if not filename.endswith(".json"):
filename += ".json"
if filename == os.path.basename(filename):
history_file_path = os.path.join(HISTORY_DIR, self.user_name, filename)
else:
history_file_path = filename
md_history_file_path = history_file_path[:-5] + ".md"
try:
os.remove(history_file_path)
os.remove(md_history_file_path)
return i18n("删除对话历史成功"), get_history_list(self.user_name), []
except:
logging.info(f"删除对话历史失败 {history_file_path}")
return (
i18n("对话历史") + filename + i18n("已经被删除啦"),
get_history_list(self.user_name),
[],
)
def auto_load(self):
self.history_file_path = new_auto_history_filename(self.user_name)
return self.load_chat_history()
def like(self):
"""like the last response, implement if needed"""
return gr.update()
def dislike(self):
"""dislike the last response, implement if needed"""
return gr.update()
def deinitialize(self):
"""deinitialize the model, implement if needed"""
pass
def clear_cuda_cache(self):
import gc
import torch
gc.collect()
torch.cuda.empty_cache()
class Base_Chat_Langchain_Client(BaseLLMModel):
def __init__(self, model_name, user_name=""):
super().__init__(model_name, user=user_name)
self.need_api_key = False
self.model = self.setup_model()
def setup_model(self):
# inplement this to setup the model then return it
pass
def _get_langchain_style_history(self):
history = [SystemMessage(content=self.system_prompt)]
for i in self.history:
if i["role"] == "user":
history.append(HumanMessage(content=i["content"]))
elif i["role"] == "assistant":
history.append(AIMessage(content=i["content"]))
return history
def get_answer_at_once(self):
assert isinstance(
self.model, BaseChatModel
), "model is not instance of LangChain BaseChatModel"
history = self._get_langchain_style_history()
response = self.model.generate(history)
return response.content, sum(response.content)
def get_answer_stream_iter(self):
it = CallbackToIterator()
assert isinstance(
self.model, BaseChatModel
), "model is not instance of LangChain BaseChatModel"
history = self._get_langchain_style_history()
def thread_func():
self.model(
messages=history, callbacks=[ChuanhuCallbackHandler(it.callback)]
)
it.finish()
t = Thread(target=thread_func)
t.start()
partial_text = ""
for value in it:
partial_text += value
yield partial_text