--- title: Semantrix emoji: 🔠 colorFrom: indigo colorTo: pink sdk: gradio sdk_version: 5.1.0 app_file: app.py pinned: false license: other --- # Semantrix Game This repository contains the implementation of the Semantrix game, a word guessing game using word embeddings. The game supports multiple languages (Spanish and English) and can be configured to use either a Word2Vec model or a SentenceTransformer model for word embeddings. ## Modules ### app.py This module defines a Gradio-based web application for the Semantrix game. The application allows users to play the game in either Spanish or English, using different embedding models for word similarity. #### Functions - `convert_to_markdown_centered(text)`: Converts text to a centered markdown format for displaying game history and last attempt. - **Parameters**: - `text (str)`: The text to be converted. - **Returns**: `str`: The centered markdown formatted text. - `reset(difficulty, lang, model)`: Resets the game state based on the selected difficulty, language, and model. - **Parameters**: - `difficulty`: The selected difficulty level. - `lang`: The selected language. - `model`: The selected embedding model. - **Returns**: `list`: A list of initial output components for the UI. - `change(state, inp)`: Changes the game state by incrementing the state variable. - **Parameters**: - `state`: The current game state. - `inp`: The user input. - **Returns**: `list`: A list containing the updated state and input component. - `update(state, radio, inp, hint)`: Updates the game state and UI components based on the current state and user inputs. - **Parameters**: - `state`: The current game state. - `radio`: The radio input component. - `inp`: The user input. - `hint`: The hint state. - **Returns**: `list`: A list of updated output components for the UI. ### game.py This module defines the Semantrix class, which implements a word guessing game using word embeddings. The game can be configured to use either a Word2Vec model or a SentenceTransformer model for word embeddings. The game supports multiple languages and difficulty levels. #### Classes - `Semantrix`: A class that implements the Semantrix word guessing game. - **Methods**: - `__init__(self, lang=0, model_type="SentenceTransformer")`: Initializes the Semantrix game with the specified language and model type. - `prepare_game(self, difficulty)`: Prepares the game with the selected difficulty level. - `gen_rank(self, repeated)`: Generates the ranking file based on the scores. - `play_game(self, word)`: Plays the game with the selected word and returns feedback. - `curiosity(self)`: Generates a curiosity hint about the secret word once the game is over. ### hints.py This module provides functions to generate dynamic hints and curiosities about a secret word using language models (LLMs). #### Functions - `hint(secret, n, model, last_hint, lang, Config)`: Generates a dynamic hint based on the secret word and the number of hints given. - **Parameters**: - `secret (str)`: The secret word. - `n (int)`: The number of hints already given. - `model`: The sentence transformer model used for encoding. - `last_hint (int)`: The index of the last hint given. - `lang (int)`: The language code (0 for Spanish, 1 for English). - `Config`: Configuration object containing hint templates. - **Returns**: `tuple`: A tuple containing the generated hint (str), the updated number of hints (int), and the index of the last hint given (int). - `curiosity(secret, Config)`: Generates a curiosity about the secret word. - **Parameters**: - `secret (str)`: The secret word. - `Config`: Configuration object containing the curiosity template. - **Returns**: `str`: The generated curiosity. - `ireplace(old, new, text)`: Replaces all occurrences of a substring in a string, case-insensitively. - **Parameters**: - `old (str)`: The substring to be replaced. - `new (str)`: The substring to replace with. - `text (str)`: The original string. - **Returns**: `str`: The modified string with all occurrences of the old substring replaced by the new substring. ## How to Run 1. Clone the repository. 2. Install the required dependencies. 3. Run the `app.py` script to launch the Gradio web application. ## Dependencies - Gradio - OpenAI - SentenceTransformers - Gensim - NumPy ## License This project is licensed under the MIT License.