import gradio as gr from transformers import pipeline generator = pipeline("visual-question-answering", model="jihadzakki/blip1-medvqa") def format_answer(image, question): result = generator(image, question) print(result) # Print the result to see its structure predicted_answer = result[0].get('answer', 'No answer found') # Adjust this key if necessary return f"Predicted Answer: {predicted_answer}" VisualQAApp = gr.Interface( fn=format_answer, inputs=[ gr.Image(label="Upload image", type="pil"), gr.Textbox(label="Question"), ], outputs=[gr.Textbox(label="Answer")], title="Visual Question Answering using BLIP Model", description="VQA", allow_flagging="never" ) VisualQAApp.launch(share=True)