Julius8888's picture
Upload 226 files
bc4f3f8 verified
raw
history blame
29.9 kB
# flake8: noqa: E402
import platform
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from tqdm import tqdm
import logging
from config import config
import argparse
import datetime
import gc
logging.getLogger("numba").setLevel(logging.WARNING)
import commons
import utils
from data_utils import (
TextAudioSpeakerLoader,
TextAudioSpeakerCollate,
DistributedBucketSampler,
)
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
DurationDiscriminator,
WavLMDiscriminator,
)
from losses import (
generator_loss,
discriminator_loss,
feature_loss,
kl_loss,
WavLMLoss,
)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from text.symbols import symbols
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = (
True # If encontered training problem,please try to disable TF32.
)
torch.set_float32_matmul_precision("medium")
torch.backends.cuda.sdp_kernel("flash")
torch.backends.cuda.enable_flash_sdp(True)
torch.backends.cuda.enable_mem_efficient_sdp(
True
) # Not available if torch version is lower than 2.0
global_step = 0
def run():
# 环境变量解析
envs = config.train_ms_config.env
for env_name, env_value in envs.items():
if env_name not in os.environ.keys():
print("加载config中的配置{}".format(str(env_value)))
os.environ[env_name] = str(env_value)
print(
"加载环境变量 \nMASTER_ADDR: {},\nMASTER_PORT: {},\nWORLD_SIZE: {},\nRANK: {},\nLOCAL_RANK: {}".format(
os.environ["MASTER_ADDR"],
os.environ["MASTER_PORT"],
os.environ["WORLD_SIZE"],
os.environ["RANK"],
os.environ["LOCAL_RANK"],
)
)
backend = "nccl"
if platform.system() == "Windows":
backend = "gloo" # If Windows,switch to gloo backend.
dist.init_process_group(
backend=backend,
init_method="env://",
timeout=datetime.timedelta(seconds=300),
) # Use torchrun instead of mp.spawn
rank = dist.get_rank()
local_rank = int(os.environ["LOCAL_RANK"])
n_gpus = dist.get_world_size()
# 命令行/config.yml配置解析
# hps = utils.get_hparams()
parser = argparse.ArgumentParser()
# 非必要不建议使用命令行配置,请使用config.yml文件
parser.add_argument(
"-c",
"--config",
type=str,
default=config.train_ms_config.config_path,
help="JSON file for configuration",
)
parser.add_argument(
"-m",
"--model",
type=str,
help="数据集文件夹路径,请注意,数据不再默认放在/logs文件夹下。如果需要用命令行配置,请声明相对于根目录的路径",
default=config.dataset_path,
)
args = parser.parse_args()
model_dir = os.path.join(args.model, config.train_ms_config.model)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
hps = utils.get_hparams_from_file(args.config)
hps.model_dir = model_dir
# 比较路径是否相同
if os.path.realpath(args.config) != os.path.realpath(
config.train_ms_config.config_path
):
with open(args.config, "r", encoding="utf-8") as f:
data = f.read()
with open(config.train_ms_config.config_path, "w", encoding="utf-8") as f:
f.write(data)
torch.manual_seed(hps.train.seed)
torch.cuda.set_device(local_rank)
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(
train_dataset,
num_workers=min(config.train_ms_config.num_workers, os.cpu_count() - 1),
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler,
persistent_workers=True,
prefetch_factor=4,
) # DataLoader config could be adjusted.
if rank == 0:
eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps.data)
eval_loader = DataLoader(
eval_dataset,
num_workers=0,
shuffle=False,
batch_size=1,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
if (
"use_noise_scaled_mas" in hps.model.keys()
and hps.model.use_noise_scaled_mas is True
):
print("Using noise scaled MAS for VITS2")
mas_noise_scale_initial = 0.01
noise_scale_delta = 2e-6
else:
print("Using normal MAS for VITS1")
mas_noise_scale_initial = 0.0
noise_scale_delta = 0.0
if (
"use_duration_discriminator" in hps.model.keys()
and hps.model.use_duration_discriminator is True
):
print("Using duration discriminator for VITS2")
net_dur_disc = DurationDiscriminator(
hps.model.hidden_channels,
hps.model.hidden_channels,
3,
0.1,
gin_channels=hps.model.gin_channels if hps.data.n_speakers != 0 else 0,
).cuda(local_rank)
else:
net_dur_disc = None
if (
"use_spk_conditioned_encoder" in hps.model.keys()
and hps.model.use_spk_conditioned_encoder is True
):
if hps.data.n_speakers == 0:
raise ValueError(
"n_speakers must be > 0 when using spk conditioned encoder to train multi-speaker model"
)
else:
print("Using normal encoder for VITS1")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
mas_noise_scale_initial=mas_noise_scale_initial,
noise_scale_delta=noise_scale_delta,
**hps.model,
).cuda(local_rank)
if getattr(hps.train, "freeze_ZH_bert", False):
print("Freezing ZH bert encoder !!!")
for param in net_g.enc_p.bert_proj.parameters():
param.requires_grad = False
if getattr(hps.train, "freeze_EN_bert", False):
print("Freezing EN bert encoder !!!")
for param in net_g.enc_p.en_bert_proj.parameters():
param.requires_grad = False
if getattr(hps.train, "freeze_JP_bert", False):
print("Freezing JP bert encoder !!!")
for param in net_g.enc_p.ja_bert_proj.parameters():
param.requires_grad = False
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(local_rank)
net_wd = WavLMDiscriminator(
hps.model.slm.hidden, hps.model.slm.nlayers, hps.model.slm.initial_channel
).cuda(local_rank)
optim_g = torch.optim.AdamW(
filter(lambda p: p.requires_grad, net_g.parameters()),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
optim_wd = torch.optim.AdamW(
net_wd.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
if net_dur_disc is not None:
optim_dur_disc = torch.optim.AdamW(
net_dur_disc.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
else:
optim_dur_disc = None
net_g = DDP(net_g, device_ids=[local_rank], bucket_cap_mb=512)
net_d = DDP(net_d, device_ids=[local_rank], bucket_cap_mb=512)
net_wd = DDP(net_wd, device_ids=[local_rank], bucket_cap_mb=512)
if net_dur_disc is not None:
net_dur_disc = DDP(
net_dur_disc,
device_ids=[local_rank],
bucket_cap_mb=512,
)
# 下载底模
if config.train_ms_config.base["use_base_model"]:
utils.download_checkpoint(
hps.model_dir,
config.train_ms_config.base,
token=config.openi_token,
mirror=config.mirror,
)
dur_resume_lr = hps.train.learning_rate
wd_resume_lr = hps.train.learning_rate
if net_dur_disc is not None:
try:
_, _, dur_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "DUR_*.pth"),
net_dur_disc,
optim_dur_disc,
skip_optimizer=hps.train.skip_optimizer
if "skip_optimizer" in hps.train
else True,
)
if not optim_dur_disc.param_groups[0].get("initial_lr"):
optim_dur_disc.param_groups[0]["initial_lr"] = dur_resume_lr
except:
print("Initialize dur_disc")
try:
_, optim_g, g_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"),
net_g,
optim_g,
skip_optimizer=hps.train.skip_optimizer
if "skip_optimizer" in hps.train
else True,
)
_, optim_d, d_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"),
net_d,
optim_d,
skip_optimizer=hps.train.skip_optimizer
if "skip_optimizer" in hps.train
else True,
)
if not optim_g.param_groups[0].get("initial_lr"):
optim_g.param_groups[0]["initial_lr"] = g_resume_lr
if not optim_d.param_groups[0].get("initial_lr"):
optim_d.param_groups[0]["initial_lr"] = d_resume_lr
epoch_str = max(epoch_str, 1)
# global_step = (epoch_str - 1) * len(train_loader)
global_step = int(
utils.get_steps(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"))
)
print(
f"******************检测到模型存在,epoch为 {epoch_str},gloabl step为 {global_step}*********************"
)
except Exception as e:
print(e)
epoch_str = 1
global_step = 0
try:
_, optim_wd, wd_resume_lr, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "WD_*.pth"),
net_wd,
optim_wd,
skip_optimizer=hps.train.skip_optimizer
if "skip_optimizer" in hps.train
else True,
)
if not optim_wd.param_groups[0].get("initial_lr"):
optim_wd.param_groups[0]["initial_lr"] = wd_resume_lr
except Exception as e:
print(e)
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_wd = torch.optim.lr_scheduler.ExponentialLR(
optim_wd, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
if net_dur_disc is not None:
scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(
optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
else:
scheduler_dur_disc = None
scaler = GradScaler(enabled=hps.train.bf16_run)
wl = WavLMLoss(
hps.model.slm.model,
net_wd,
hps.data.sampling_rate,
hps.model.slm.sr,
).to(local_rank)
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(
rank,
local_rank,
epoch,
hps,
[net_g, net_d, net_dur_disc, net_wd, wl],
[optim_g, optim_d, optim_dur_disc, optim_wd],
[scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd],
scaler,
[train_loader, eval_loader],
logger,
[writer, writer_eval],
)
else:
train_and_evaluate(
rank,
local_rank,
epoch,
hps,
[net_g, net_d, net_dur_disc, net_wd, wl],
[optim_g, optim_d, optim_dur_disc, optim_wd],
[scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd],
scaler,
[train_loader, None],
None,
None,
)
scheduler_g.step()
scheduler_d.step()
scheduler_wd.step()
if net_dur_disc is not None:
scheduler_dur_disc.step()
def train_and_evaluate(
rank,
local_rank,
epoch,
hps,
nets,
optims,
schedulers,
scaler,
loaders,
logger,
writers,
):
net_g, net_d, net_dur_disc, net_wd, wl = nets
optim_g, optim_d, optim_dur_disc, optim_wd = optims
scheduler_g, scheduler_d, scheduler_dur_disc, scheduler_wd = schedulers
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
net_wd.train()
if net_dur_disc is not None:
net_dur_disc.train()
for batch_idx, (
x,
x_lengths,
spec,
spec_lengths,
y,
y_lengths,
speakers,
tone,
language,
bert,
ja_bert,
en_bert,
) in enumerate(tqdm(train_loader)):
if net_g.module.use_noise_scaled_mas:
current_mas_noise_scale = (
net_g.module.mas_noise_scale_initial
- net_g.module.noise_scale_delta * global_step
)
net_g.module.current_mas_noise_scale = max(current_mas_noise_scale, 0.0)
x, x_lengths = x.cuda(local_rank, non_blocking=True), x_lengths.cuda(
local_rank, non_blocking=True
)
spec, spec_lengths = spec.cuda(
local_rank, non_blocking=True
), spec_lengths.cuda(local_rank, non_blocking=True)
y, y_lengths = y.cuda(local_rank, non_blocking=True), y_lengths.cuda(
local_rank, non_blocking=True
)
speakers = speakers.cuda(local_rank, non_blocking=True)
tone = tone.cuda(local_rank, non_blocking=True)
language = language.cuda(local_rank, non_blocking=True)
bert = bert.cuda(local_rank, non_blocking=True)
ja_bert = ja_bert.cuda(local_rank, non_blocking=True)
en_bert = en_bert.cuda(local_rank, non_blocking=True)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
(
y_hat,
l_length,
attn,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
(hidden_x, logw, logw_, logw_sdp),
g,
) = net_g(
x,
x_lengths,
spec,
spec_lengths,
speakers,
tone,
language,
bert,
ja_bert,
en_bert,
)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_mel = commons.slice_segments(
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y = commons.slice_segments(
y, ids_slice * hps.data.hop_length, hps.train.segment_size
) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
loss_disc_all = loss_disc
if net_dur_disc is not None:
y_dur_hat_r, y_dur_hat_g = net_dur_disc(
hidden_x.detach(),
x_mask.detach(),
logw_.detach(),
logw.detach(),
g.detach(),
)
y_dur_hat_r_sdp, y_dur_hat_g_sdp = net_dur_disc(
hidden_x.detach(),
x_mask.detach(),
logw_.detach(),
logw_sdp.detach(),
g.detach(),
)
y_dur_hat_r = y_dur_hat_r + y_dur_hat_r_sdp
y_dur_hat_g = y_dur_hat_g + y_dur_hat_g_sdp
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
# TODO: I think need to mean using the mask, but for now, just mean all
(
loss_dur_disc,
losses_dur_disc_r,
losses_dur_disc_g,
) = discriminator_loss(y_dur_hat_r, y_dur_hat_g)
loss_dur_disc_all = loss_dur_disc
optim_dur_disc.zero_grad()
scaler.scale(loss_dur_disc_all).backward()
scaler.unscale_(optim_dur_disc)
# torch.nn.utils.clip_grad_norm_(
# parameters=net_dur_disc.parameters(), max_norm=100
# )
grad_norm_dur = commons.clip_grad_value_(
net_dur_disc.parameters(), None
)
scaler.step(optim_dur_disc)
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
if getattr(hps.train, "bf16_run", False):
torch.nn.utils.clip_grad_norm_(parameters=net_d.parameters(), max_norm=200)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
loss_slm = wl.discriminator(
y.detach().squeeze(), y_hat.detach().squeeze()
).mean()
optim_wd.zero_grad()
scaler.scale(loss_slm).backward()
scaler.unscale_(optim_wd)
# torch.nn.utils.clip_grad_norm_(parameters=net_wd.parameters(), max_norm=200)
grad_norm_wd = commons.clip_grad_value_(net_wd.parameters(), None)
scaler.step(optim_wd)
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
if net_dur_disc is not None:
_, y_dur_hat_g = net_dur_disc(hidden_x, x_mask, logw_, logw, g)
_, y_dur_hat_g_sdp = net_dur_disc(hidden_x, x_mask, logw_, logw_sdp, g)
y_dur_hat_g = y_dur_hat_g + y_dur_hat_g_sdp
with autocast(enabled=hps.train.bf16_run, dtype=torch.bfloat16):
loss_dur = torch.sum(l_length.float())
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_lm = wl(y.detach().squeeze(), y_hat.squeeze()).mean()
loss_lm_gen = wl.generator(y_hat.squeeze())
loss_gen_all = (
loss_gen
+ loss_fm
+ loss_mel
+ loss_dur
+ loss_kl
+ loss_lm
+ loss_lm_gen
)
if net_dur_disc is not None:
loss_dur_gen, losses_dur_gen = generator_loss(y_dur_hat_g)
loss_gen_all += loss_dur_gen
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
if getattr(hps.train, "bf16_run", False):
torch.nn.utils.clip_grad_norm_(parameters=net_g.parameters(), max_norm=500)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
if rank == 0:
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]["lr"]
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
logger.info(
"Train Epoch: {} [{:.0f}%]".format(
epoch, 100.0 * batch_idx / len(train_loader)
)
)
logger.info([x.item() for x in losses] + [global_step, lr])
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc_all,
"loss/wd/total": loss_slm,
"learning_rate": lr,
"grad_norm_d": grad_norm_d,
"grad_norm_g": grad_norm_g,
"grad_norm_dur": grad_norm_dur,
"grad_norm_wd": grad_norm_wd,
}
scalar_dict.update(
{
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/dur": loss_dur,
"loss/g/kl": loss_kl,
"loss/g/lm": loss_lm,
"loss/g/lm_gen": loss_lm_gen,
}
)
scalar_dict.update(
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
)
scalar_dict.update(
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
)
scalar_dict.update(
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
)
if net_dur_disc is not None:
scalar_dict.update({"loss/dur_disc/total": loss_dur_disc_all})
scalar_dict.update(
{
"loss/dur_disc_g/{}".format(i): v
for i, v in enumerate(losses_dur_disc_g)
}
)
scalar_dict.update(
{
"loss/dur_disc_r/{}".format(i): v
for i, v in enumerate(losses_dur_disc_r)
}
)
scalar_dict.update({"loss/g/dur_gen": loss_dur_gen})
scalar_dict.update(
{
"loss/g/dur_gen_{}".format(i): v
for i, v in enumerate(losses_dur_gen)
}
)
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(
y_mel[0].data.cpu().numpy()
),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].data.cpu().numpy()
),
"all/mel": utils.plot_spectrogram_to_numpy(
mel[0].data.cpu().numpy()
),
"all/attn": utils.plot_alignment_to_numpy(
attn[0, 0].data.cpu().numpy()
),
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
)
if global_step % hps.train.eval_interval == 0:
evaluate(hps, net_g, eval_loader, writer_eval)
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)),
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)),
)
utils.save_checkpoint(
net_wd,
optim_wd,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "WD_{}.pth".format(global_step)),
)
if net_dur_disc is not None:
utils.save_checkpoint(
net_dur_disc,
optim_dur_disc,
hps.train.learning_rate,
epoch,
os.path.join(hps.model_dir, "DUR_{}.pth".format(global_step)),
)
keep_ckpts = config.train_ms_config.keep_ckpts
if keep_ckpts > 0:
utils.clean_checkpoints(
path_to_models=hps.model_dir,
n_ckpts_to_keep=keep_ckpts,
sort_by_time=True,
)
global_step += 1
gc.collect()
torch.cuda.empty_cache()
if rank == 0:
logger.info("====> Epoch: {}".format(epoch))
def evaluate(hps, generator, eval_loader, writer_eval):
generator.eval()
image_dict = {}
audio_dict = {}
print("Evaluating ...")
with torch.no_grad():
for batch_idx, (
x,
x_lengths,
spec,
spec_lengths,
y,
y_lengths,
speakers,
tone,
language,
bert,
ja_bert,
en_bert,
) in enumerate(eval_loader):
x, x_lengths = x.cuda(), x_lengths.cuda()
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
y, y_lengths = y.cuda(), y_lengths.cuda()
speakers = speakers.cuda()
bert = bert.cuda()
ja_bert = ja_bert.cuda()
en_bert = en_bert.cuda()
tone = tone.cuda()
language = language.cuda()
for use_sdp in [True, False]:
y_hat, attn, mask, *_ = generator.module.infer(
x,
x_lengths,
speakers,
tone,
language,
bert,
ja_bert,
en_bert,
y=spec,
max_len=1000,
sdp_ratio=0.0 if not use_sdp else 1.0,
)
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
image_dict.update(
{
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].cpu().numpy()
)
}
)
audio_dict.update(
{
f"gen/audio_{batch_idx}_{use_sdp}": y_hat[
0, :, : y_hat_lengths[0]
]
}
)
image_dict.update(
{
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(
mel[0].cpu().numpy()
)
}
)
audio_dict.update({f"gt/audio_{batch_idx}": y[0, :, : y_lengths[0]]})
utils.summarize(
writer=writer_eval,
global_step=global_step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate,
)
generator.train()
if __name__ == "__main__":
run()