Justin-J commited on
Commit
22007d6
1 Parent(s): 2a12f1e

Added my Project files, deployed my Gradio application.

Browse files
Files changed (6) hide show
  1. app.py +86 -0
  2. data.csv +0 -0
  3. encoder.pkl +3 -0
  4. model.pkl +3 -0
  5. requirements.txt +2 -0
  6. scaler.pkl +3 -0
app.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import pickle
4
+
5
+ # Load the model and encoder and scaler
6
+ model = pickle.load(open("model.pkl", "rb"))
7
+ encoder = pickle.load(open("encoder.pkl", "rb"))
8
+ scaler = pickle.load(open("scaler.pkl", "rb"))
9
+
10
+ # Load the data
11
+ data = pd.read_csv('data.csv')
12
+
13
+ # Define the input and output interfaces for the Gradio app
14
+ def create_gradio_inputs(data):
15
+ input_components = []
16
+ for column in data.columns:
17
+ if data[column].dtype == 'object' and len(data[column].unique()) > 3:
18
+ input_components.append(gr.Dropdown(choices=list(data[column].unique()), label=column))
19
+ elif data[column].dtype == 'object' and len(data[column].unique()) <= 3:
20
+ input_components.append(gr.Radio(choices=list(data[column].unique()), label=column))
21
+ elif data[column].dtype in ['int64', 'float64']:
22
+ if data[column].min() == 1:
23
+ input_components.append(gr.Slider(minimum=1, maximum=data[column].max(), step=1, label=column))
24
+ else:
25
+ input_components.append(gr.Slider(maximum=data[column].max(), step=0.5, label=column))
26
+ return input_components
27
+
28
+ input_components = create_gradio_inputs(data)
29
+
30
+ output_components = [
31
+ gr.Label(label="Churn Prediction"),
32
+ ]
33
+
34
+ # Convert the input values to a pandas DataFrame with the appropriate column names
35
+ def input_df_creator(gender, SeniorCitizen, Partner, Dependents, tenure,
36
+ PhoneService, InternetService, OnlineBackup, TechSupport,
37
+ Contract, PaperlessBilling, PaymentMethod, MonthlyCharges,
38
+ TotalCharges, StreamingService, SecurityService):
39
+ input_data = pd.DataFrame({
40
+ "gender": [gender],
41
+ "SeniorCitizen": [SeniorCitizen],
42
+ "Partner": [Partner],
43
+ "Dependents": [Dependents],
44
+ "tenure": [int(tenure)],
45
+ "PhoneService": [PhoneService],
46
+ "InternetService": [InternetService],
47
+ "OnlineBackup": [OnlineBackup],
48
+ "TechSupport": [TechSupport],
49
+ "Contract": [Contract],
50
+ "PaperlessBilling": [PaperlessBilling],
51
+ "PaymentMethod": [PaymentMethod],
52
+ "StreamingService": [StreamingService],
53
+ "SecurityService": [SecurityService],
54
+ "MonthlyCharges": [float(MonthlyCharges)],
55
+ "TotalCharges": [float(TotalCharges)],
56
+ })
57
+ return input_data
58
+
59
+ # Define the function to be called when the Gradio app is run
60
+ def predict_churn(gender, SeniorCitizen, Partner, Dependents, tenure,
61
+ PhoneService, InternetService, OnlineBackup, TechSupport,
62
+ Contract, PaperlessBilling, PaymentMethod, MonthlyCharges,
63
+ TotalCharges, StreamingService, SecurityService):
64
+ input_df = input_df_creator(gender, SeniorCitizen, Partner, Dependents, tenure,
65
+ PhoneService, InternetService, OnlineBackup, TechSupport,
66
+ Contract, PaperlessBilling, PaymentMethod, MonthlyCharges,
67
+ TotalCharges, StreamingService, SecurityService)
68
+
69
+ # Encode categorical variables
70
+ cat_cols = data.select_dtypes(include=['object']).columns
71
+ cat_encoded = encoder.transform(input_df[cat_cols])
72
+
73
+ # Scale numerical variables
74
+ num_cols = data.select_dtypes(include=['int64', 'float64']).columns
75
+ num_scaled = scaler.transform(input_df[num_cols])
76
+
77
+ # joining encoded and scaled columns back together
78
+ processed_df = pd.concat([num_scaled, cat_encoded], axis=1)
79
+
80
+ # Make prediction
81
+ prediction = model.predict(processed_df)
82
+ return "Churn" if prediction[0] == 1 else "No Churn"
83
+
84
+ # Launch the Gradio app
85
+ iface = gr.Interface(predict_churn, inputs=input_components, outputs=output_components)
86
+ iface.launch(inbrowser= True, show_error= True)
data.csv ADDED
The diff for this file is too large to render. See raw diff
 
encoder.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:425975f1f8685775681e0b1cdd172192f118bf5738245a93e559c3ab3ce5816e
3
+ size 1614
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d69efd028f0febbb979a392353c8481ca60facf77d8123488f9d3be6c12549c
3
+ size 4740256
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ gradio
2
+ scikit-learn==1.2.1
scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:82685d10226631ab8fa9d4e3745af304f12a8f8a1333d8931bcd30b412f12fb9
3
+ size 698