import gradio as gr import pandas as pd import pickle import torch from tim import create_model from tim.data import create_transform IMAGENET_1K_URL ="https://user-images.githubusercontent.com/115732734/271723332-6c824e95-5e2f-48ec-af1c-b66ac7db1d7a.jpeg" # Load the model and encoder and scaler model = pickle.load(open("model.pkl", "rb")) encoder = pickle.load(open("encoder.pkl", "rb")) scaler = pickle.load(open("scaler.pkl", "rb")) # Load the data data = pd.read_csv('data.csv') # Define the input and output interfaces for the Gradio app def create_gradio_inputs(data): input_components = [] for column in data.columns: if data[column].dtype == 'object' and len(data[column].unique()) > 3: input_components.append(gr.Dropdown(choices=list(data[column].unique()), label=column)) elif data[column].dtype == 'object' and len(data[column].unique()) <= 3: input_components.append(gr.Radio(choices=list(data[column].unique()), label=column)) elif data[column].dtype in ['int64', 'float64']: if data[column].min() == 1: input_components.append(gr.Slider(minimum=1, maximum=data[column].max(), step=1, label=column)) else: input_components.append(gr.Slider(maximum=data[column].max(), step=0.5, label=column)) return input_components input_components = create_gradio_inputs(data) output_components = [ gr.Label(label="Churn Prediction"), ] # Convert the input values to a pandas DataFrame with the appropriate column names def input_df_creator(gender, SeniorCitizen, Partner, Dependents, tenure, PhoneService, InternetService, OnlineBackup, TechSupport, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges, StreamingService, SecurityService): input_data = pd.DataFrame({ "gender": [gender], "SeniorCitizen": [SeniorCitizen], "Partner": [Partner], "Dependents": [Dependents], "tenure": [int(tenure)], "PhoneService": [PhoneService], "InternetService": [InternetService], "OnlineBackup": [OnlineBackup], "TechSupport": [TechSupport], "Contract": [Contract], "PaperlessBilling": [PaperlessBilling], "PaymentMethod": [PaymentMethod], "StreamingService": [StreamingService], "SecurityService": [SecurityService], "MonthlyCharges": [float(MonthlyCharges)], "TotalCharges": [float(TotalCharges)], }) return input_data # Define the function to be called when the Gradio app is run def predict_churn(gender, SeniorCitizen, Partner, Dependents, tenure, PhoneService, InternetService, OnlineBackup, TechSupport, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges, StreamingService, SecurityService): input_df = input_df_creator(gender, SeniorCitizen, Partner, Dependents, tenure, PhoneService, InternetService, OnlineBackup, TechSupport, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges, StreamingService, SecurityService) # Encode categorical variables cat_cols = data.select_dtypes(include=['object']).columns cat_encoded = encoder.transform(input_df[cat_cols]) # Scale numerical variables num_cols = data.select_dtypes(include=['int64', 'float64']).columns num_scaled = scaler.transform(input_df[num_cols]) # joining encoded and scaled columns back together processed_df = pd.concat([num_scaled, cat_encoded], axis=1) # Make prediction prediction = model.predict(processed_df) return "Churn" if prediction[0] == 1 else "No Churn" # Launch the Gradio app iface = gr.Interface(predict_churn, inputs=input_components, outputs=output_components) iface.launch(inbrowser= True, show_error= True)