|
import streamlit as st |
|
import joblib |
|
import pandas as pd |
|
import numpy as np |
|
import plotly.graph_objects as go |
|
from PIL import Image |
|
import time |
|
import matplotlib.pyplot as plt |
|
from io import BytesIO |
|
|
|
|
|
num_imputer = joblib.load('numerical_imputer.joblib') |
|
cat_imputer = joblib.load('cat_imputer.joblib') |
|
encoder = joblib.load('encoder.joblib') |
|
scaler = joblib.load('scaler.joblib') |
|
lr_model = joblib.load('lr_smote_model.joblib') |
|
|
|
|
|
def preprocess_input(input_data): |
|
input_df = pd.DataFrame(input_data, index=[0]) |
|
|
|
cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object'] |
|
num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object'] |
|
|
|
input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns]) |
|
input_df_imputed_num = num_imputer.transform(input_df[num_columns]) |
|
|
|
input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(), |
|
columns=encoder.get_feature_names_out(cat_columns)) |
|
|
|
input_df_scaled = scaler.transform(input_df_imputed_num) |
|
input_scaled_df = pd.DataFrame(input_df_scaled, columns=num_columns) |
|
final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1) |
|
final_df = final_df.reindex(columns=original_feature_names, fill_value=0) |
|
|
|
return final_df |
|
|
|
|
|
original_feature_names = ['MONTANT', 'FREQUENCE_RECH', 'REVENUE', 'ARPU_SEGMENT', 'FREQUENCE', |
|
'DATA_VOLUME', 'ON_NET', 'ORANGE', 'TIGO', 'ZONE1', 'ZONE2', 'REGULARITY', 'FREQ_TOP_PACK', |
|
'REGION_DAKAR', 'REGION_DIOURBEL', 'REGION_FATICK', 'REGION_KAFFRINE', 'REGION_KAOLACK', |
|
'REGION_KEDOUGOU', 'REGION_KOLDA', 'REGION_LOUGA', 'REGION_MATAM', 'REGION_SAINT-LOUIS', |
|
'REGION_SEDHIOU', 'REGION_TAMBACOUNDA', 'REGION_THIES', 'REGION_ZIGUINCHOR', |
|
'TENURE_Long-term', 'TENURE_Medium-term', 'TENURE_Mid-term', 'TENURE_Short-term', |
|
'TENURE_Very short-term', 'TOP_PACK_VAS', 'TOP_PACK_data', 'TOP_PACK_international', |
|
'TOP_PACK_messaging', 'TOP_PACK_other_services', 'TOP_PACK_social_media', |
|
'TOP_PACK_voice'] |
|
|
|
|
|
st.set_page_config(layout="wide") |
|
|
|
|
|
st.title('CUSTOMER CHURN PREDICTION APP (CCPA)') |
|
|
|
|
|
st.markdown("Churn is a one of the biggest problem in the telecom industry. Research has shown that the average monthly churn rate among the top 4 wireless carriers in the US is 1.9% - 2%") |
|
st.image("customer_kk.png", use_column_width=True) |
|
|
|
|
|
st.sidebar.image("welcome.png", use_column_width=True) |
|
|
|
|
|
|
|
models = { |
|
'Logistic Regression': {'Logistic Regression': lr_model, 'type': 'logistic_regression'}, |
|
|
|
} |
|
|
|
|
|
model_name = st.sidebar.selectbox('Logistic Regression', list(models.keys())) |
|
|
|
|
|
model = models[model_name]['Logistic Regression'] |
|
model_type = models[model_name]['type'] |
|
|
|
|
|
|
|
st.sidebar.title('ENTER CUSTOMER DETAILS') |
|
input_features = { |
|
'MONTANT': st.sidebar.number_input('Top-up Amount (MONTANT)'), |
|
'FREQUENCE_RECH': st.sidebar.number_input('No. of Times the Customer Refilled (FREQUENCE_RECH)'), |
|
'REVENUE': st.sidebar.number_input('Monthly income of the client (REVENUE)'), |
|
'ARPU_SEGMENT': st.sidebar.number_input('Income over 90 days / 3 (ARPU_SEGMENT)'), |
|
'FREQUENCE': st.sidebar.number_input('Number of times the client has made an income (FREQUENCE)'), |
|
'DATA_VOLUME': st.sidebar.number_input('Number of Connections (DATA_VOLUME)'), |
|
'ON_NET': st.sidebar.number_input('Inter Expresso Call (ON_NET)'), |
|
'ORANGE': st.sidebar.number_input('Call to Orange (ORANGE)'), |
|
'TIGO': st.sidebar.number_input('Call to Tigo (TIGO)'), |
|
'ZONE1': st.sidebar.number_input('Call to Zone 1 (ZONE1)'), |
|
'ZONE2': st.sidebar.number_input('Call to Zone 2 (ZONE2)'), |
|
'REGULARITY': st.sidebar.number_input('Number of Times the Client is Active for 90 Days (REGULARITY)'), |
|
'FREQ_TOP_PACK': st.sidebar.number_input('Number of Times the Client has Activated the Top Packs (FREQ_TOP_PACK)'), |
|
'REGION': st.sidebar.selectbox('Location of Each Client (REGION)', ['DAKAR','DIOURBEL','FATICK','AFFRINE','KAOLACK', |
|
'KEDOUGOU','KOLDA','LOUGA','MATAM','SAINT-LOUIS', |
|
'SEDHIOU','TAMBACOUNDA','HIES','ZIGUINCHOR' ]), |
|
|
|
'TENURE': st.sidebar.selectbox('Duration in the Network (TENURE)', ['Long-term','Medium-term','Mid-term','Short-term', |
|
'Very short-term']), |
|
'TOP_PACK': st.sidebar.selectbox('Most Active Pack (TOP_PACK)', ['VAS', 'data', 'international', |
|
'messaging','other_services', 'social_media', |
|
'voice']) |
|
|
|
} |
|
|
|
|
|
valid_input = True |
|
error_messages = [] |
|
|
|
|
|
numeric_ranges = { |
|
'MONTANT': [0, 1000000], |
|
'FREQUENCE_RECH': [0, 100], |
|
'REVENUE': [0, 1000000], |
|
'ARPU_SEGMENT': [0, 100000], |
|
'FREQUENCE': [0, 100], |
|
'DATA_VOLUME': [0, 100000], |
|
'ON_NET': [0, 100000], |
|
'ORANGE': [0, 100000], |
|
'TIGO': [0, 100000], |
|
'ZONE1': [0, 100000], |
|
'ZONE2': [0, 100000], |
|
'REGULARITY': [0, 100], |
|
'FREQ_TOP_PACK': [0, 100] |
|
} |
|
|
|
for feature, value in input_features.items(): |
|
range_min, range_max = numeric_ranges.get(feature, [None, None]) |
|
if range_min is not None and range_max is not None: |
|
if not range_min <= value <= range_max: |
|
valid_input = False |
|
error_messages.append(f"{feature} should be between {range_min} and {range_max}.") |
|
|
|
|
|
|
|
def predict_churn(input_data, model): |
|
|
|
preprocessed_data = preprocess_input(input_data) |
|
|
|
|
|
probabilities = model.predict_proba(preprocessed_data) |
|
|
|
|
|
if model_type == "logistic_regression": |
|
churn_labels = ["No Churn", "Churn"] |
|
|
|
churn_labels = ["Churn", "No Churn"] |
|
|
|
churn_probability = probabilities[0] |
|
|
|
|
|
churn_indices = {label: idx for idx, label in enumerate(churn_labels)} |
|
|
|
|
|
churn_index = np.argmax(churn_probability) |
|
|
|
|
|
return churn_labels, churn_probability, churn_indices, churn_index |
|
|
|
|
|
if st.sidebar.button('Predict Churn'): |
|
try: |
|
with st.spinner("Wait, Results loading..."): |
|
|
|
progress_bar = st.progress(0) |
|
step = 20 |
|
for i in range(0, 100, step): |
|
time.sleep(0.1) |
|
progress_bar.progress(i + step) |
|
|
|
|
|
churn_labels, churn_probability, churn_indices, churn_index = predict_churn(input_features, model) |
|
|
|
st.subheader('CHURN PREDICTION RESULTS') |
|
|
|
|
|
|
|
col1, col2 = st.columns(2) |
|
|
|
if churn_labels[churn_index] == "Churn": |
|
churn_prob = churn_probability[churn_index] |
|
with col1: |
|
st.error(f"DANGER! This customer is likely to churn with a probability of {churn_prob * 100:.2f}% π’") |
|
resized_churn_image = Image.open('Churn.jpeg') |
|
resized_churn_image = resized_churn_image.resize((350, 300)) |
|
st.image(resized_churn_image) |
|
|
|
with col2: |
|
st.info("ADVICE TO EXPRESSOR MANAGEMENT:\n" |
|
"- Identify Reasons for Churn\n" |
|
"- Offer Incentives\n" |
|
"- Showcase Improvements\n" |
|
"- Gather Feedback\n" |
|
"- Customer Surveys\n" |
|
"- Personalized Recommendations\n" |
|
"- Reestablish Trust\n" |
|
"- Follow-Up Communication\n" |
|
"- Reactivation Campaigns\n" |
|
"- Improve product or service offerings based on customer feedback\n" |
|
" SUMMARY NOTE\n" |
|
"- Remember that winning back churning customers takes time and persistence.\n" |
|
"- It\s crucial to genuinely address their concerns and provide value to rebuild their trust in your business\n" |
|
"- Regularly evaluate the effectiveness of your strategies and adjust them as needed based on customer responses and feedback\n") |
|
else: |
|
churn_prob = churn_probability[churn_index] |
|
with col1: |
|
st.success(f"This customer is a loyal (not churn) with a probability of {churn_prob * 100:.2f}% π") |
|
resized_not_churn_image = Image.open('NotChurn.png') |
|
resized_not_churn_image = resized_not_churn_image.resize((350, 300)) |
|
st.image(resized_not_churn_image) |
|
|
|
with col2: |
|
st.info("ADVICE TO EXPRESSOR MANAGEMENT\n" |
|
"- Quality Products/Services\n" |
|
"- Personalized Experience\n" |
|
"- Loyalty Programs\n" |
|
"- Excellent Customer Service\n" |
|
"- Exclusive Content\n" |
|
"- Early Access\n" |
|
"- Personal Thank-You Notes\n" |
|
"- Surprise Gifts or Discounts\n" |
|
"- Feedback Opportunities\n" |
|
"- Community Engagement\n" |
|
"- Anniversary Celebrations\n" |
|
"- Refer-a-Friend Programs\n" |
|
"SUMMARY NOTE\n" |
|
"- Remember that the key to building lasting loyalty is consistency.\n" |
|
"- Continuously demonstrate your commitment to meeting customers needs and enhancing their experience.\n" |
|
"- Regularly assess the effectiveness of your loyalty initiatives and adapt them based on customer feedback and preferences.") |
|
|
|
st.subheader('Churn Probability') |
|
|
|
|
|
fig = go.Figure(data=[go.Pie( |
|
labels=churn_labels, |
|
values=churn_probability, |
|
hole=0.5, |
|
textinfo='label+percent', |
|
marker=dict(colors=['#FFA07A', '#6495ED', '#FFD700', '#32CD32', '#FF69B4', '#8B008B']))]) |
|
|
|
fig.update_traces( |
|
hoverinfo='label+percent', |
|
textfont_size=12, |
|
textposition='inside', |
|
texttemplate='%{label}: %{percent:.2f}%' |
|
) |
|
|
|
fig.update_layout( |
|
title='Churn Probability', |
|
title_x=0.5, |
|
showlegend=False, |
|
width=500, |
|
height=500 |
|
) |
|
|
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
|
|
st.subheader('Customer Churn Probability Comparison') |
|
|
|
average_churn_rate = 19 |
|
|
|
|
|
main_data_churn_probability = average_churn_rate / 100 |
|
|
|
|
|
predicted_churn_prob = churn_probability[churn_index] |
|
|
|
if churn_labels[churn_index] == "Churn": |
|
churn_prob = churn_probability[churn_index] |
|
|
|
labels = ['Churn Probability', 'Average Churn Probability'] |
|
values = [predicted_churn_prob, main_data_churn_probability] |
|
|
|
fig = go.Figure(data=[go.Bar(x=labels, y=values)]) |
|
fig.update_layout( |
|
xaxis_title='Churn Probability', |
|
yaxis_title='Probability', |
|
title='Comparison with Average Churn Rate', |
|
yaxis=dict(range=[0, 1]) |
|
) |
|
|
|
|
|
if predicted_churn_prob > main_data_churn_probability: |
|
churn_comparison = "higher" |
|
elif predicted_churn_prob < main_data_churn_probability: |
|
churn_comparison = "lower" |
|
else: |
|
churn_comparison = "equal" |
|
|
|
explanation = f"This compares the churn probability of the selected customer " \ |
|
f"with the average churn rate of all customers. It provides insights into how the " \ |
|
f"individual customer's churn likelihood ({predicted_churn_prob:.2f}) compares to the " \ |
|
f"overall trend. The 'Churn Probability' represents the likelihood of churn " \ |
|
f"for the selected customer, while the 'Average Churn Rate' represents the average " \ |
|
f"churn rate across all customers ({main_data_churn_probability:.2f}).\n\n" \ |
|
f"The customer's churn rate is {churn_comparison} than the average churn rate." |
|
|
|
st.plotly_chart(fig) |
|
st.write(explanation) |
|
else: |
|
|
|
labels = ['No-Churn Probability', 'Average Churn Probability'] |
|
values = [1 - predicted_churn_prob, main_data_churn_probability] |
|
|
|
fig = go.Figure(data=[go.Bar(x=labels, y=values)]) |
|
fig.update_layout( |
|
xaxis_title='Churn Probability', |
|
yaxis_title='Probability', |
|
title='Comparison with Average Churn Rate', |
|
yaxis=dict(range=[0, 1]) |
|
) |
|
|
|
explanation = f"This bar chart compares the churn probability of the selected customer " \ |
|
f"with the average churn rate of all customers. It provides insights into how the " \ |
|
f"individual customer's churn likelihood ({predicted_churn_prob:.2f}) compares to the " \ |
|
f"overall trend." \ |
|
f"The prediction indicates that the customer is not likely to churn. " \ |
|
f"The churn probability is lower than the no-churn probability." |
|
|
|
st.plotly_chart(fig) |
|
st.write(explanation) |
|
except Exception as e: |
|
st.error(f"An error occurred: {str(e)}") |
|
|