Justin-J's picture
Changed my project file to give it a more unique and professional look.
3377766
import streamlit as st
import joblib
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from PIL import Image
import time
import matplotlib.pyplot as plt
from io import BytesIO
num_imputer = joblib.load('numerical_imputer.joblib')
cat_imputer = joblib.load('cat_imputer.joblib')
encoder = joblib.load('encoder.joblib')
scaler = joblib.load('scaler.joblib')
lr_model = joblib.load('lr_smote_model.joblib')
def preprocess_input(input_data):
input_df = pd.DataFrame(input_data, index=[0])
cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
input_df_imputed_num = num_imputer.transform(input_df[num_columns])
input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(),
columns=encoder.get_feature_names_out(cat_columns))
input_df_scaled = scaler.transform(input_df_imputed_num)
input_scaled_df = pd.DataFrame(input_df_scaled, columns=num_columns)
final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1)
final_df = final_df.reindex(columns=original_feature_names, fill_value=0)
return final_df
original_feature_names = ['MONTANT', 'FREQUENCE_RECH', 'REVENUE', 'ARPU_SEGMENT', 'FREQUENCE',
'DATA_VOLUME', 'ON_NET', 'ORANGE', 'TIGO', 'ZONE1', 'ZONE2', 'REGULARITY', 'FREQ_TOP_PACK',
'REGION_DAKAR', 'REGION_DIOURBEL', 'REGION_FATICK', 'REGION_KAFFRINE', 'REGION_KAOLACK',
'REGION_KEDOUGOU', 'REGION_KOLDA', 'REGION_LOUGA', 'REGION_MATAM', 'REGION_SAINT-LOUIS',
'REGION_SEDHIOU', 'REGION_TAMBACOUNDA', 'REGION_THIES', 'REGION_ZIGUINCHOR',
'TENURE_Long-term', 'TENURE_Medium-term', 'TENURE_Mid-term', 'TENURE_Short-term',
'TENURE_Very short-term', 'TOP_PACK_VAS', 'TOP_PACK_data', 'TOP_PACK_international',
'TOP_PACK_messaging', 'TOP_PACK_other_services', 'TOP_PACK_social_media',
'TOP_PACK_voice']
# Set up the Streamlit app
st.set_page_config(layout="wide")
# Main page - Churn Prediction
st.title('CUSTOMER CHURN PREDICTION APP (CCPA)')
# Main page - Churn Prediction
st.markdown("Churn is a one of the biggest problem in the telecom industry. Research has shown that the average monthly churn rate among the top 4 wireless carriers in the US is 1.9% - 2%")
st.image("bggg.png", use_column_width=True)
# How to use
st.sidebar.image("customer_r.jpg", use_column_width=True)
st.sidebar.image("customer_tyy.jpg", use_column_width=True)
# st.sidebar.title("ENTER THE DETAILS OF THE CUSTOMER HERE")
# Define a dictionary of models with their names, actual models, and types
models = {
'Logistic Regression': {'Logistic Regression': lr_model, 'type': 'logistic_regression'},
#'ComplementNB': {'ComplementNB': cnb_model, 'type': 'Complement NB'}
}
# Allow the user to select a model from the sidebar
model_name = st.sidebar.selectbox('Logistic Regression', list(models.keys()))
# Retrieve the selected model and its type from the dictionary
model = models[model_name]['Logistic Regression']
model_type = models[model_name]['type']
# Collect input from the user
st.sidebar.title('ENTER CUSTOMER DETAILS')
input_features = {
'MONTANT': st.sidebar.number_input('Top-up Amount (MONTANT)'),
'FREQUENCE_RECH': st.sidebar.number_input('No. of Times the Customer Refilled (FREQUENCE_RECH)'),
'REVENUE': st.sidebar.number_input('Monthly income of the client (REVENUE)'),
'ARPU_SEGMENT': st.sidebar.number_input('Income over 90 days / 3 (ARPU_SEGMENT)'),
'FREQUENCE': st.sidebar.number_input('Number of times the client has made an income (FREQUENCE)'),
'DATA_VOLUME': st.sidebar.number_input('Number of Connections (DATA_VOLUME)'),
'ON_NET': st.sidebar.number_input('Inter Expresso Call (ON_NET)'),
'ORANGE': st.sidebar.number_input('Call to Orange (ORANGE)'),
'TIGO': st.sidebar.number_input('Call to Tigo (TIGO)'),
'ZONE1': st.sidebar.number_input('Call to Zone 1 (ZONE1)'),
'ZONE2': st.sidebar.number_input('Call to Zone 2 (ZONE2)'),
'REGULARITY': st.sidebar.number_input('Number of Times the Client is Active for 90 Days (REGULARITY)'),
'FREQ_TOP_PACK': st.sidebar.number_input('Number of Times the Client has Activated the Top Packs (FREQ_TOP_PACK)'),
'REGION': st.sidebar.selectbox('Location of Each Client (REGION)', ['DAKAR','DIOURBEL','FATICK','AFFRINE','KAOLACK',
'KEDOUGOU','KOLDA','LOUGA','MATAM','SAINT-LOUIS',
'SEDHIOU','TAMBACOUNDA','HIES','ZIGUINCHOR' ]),
'TENURE': st.sidebar.selectbox('Duration in the Network (TENURE)', ['Long-term','Medium-term','Mid-term','Short-term',
'Very short-term']),
'TOP_PACK': st.sidebar.selectbox('Most Active Pack (TOP_PACK)', ['VAS', 'data', 'international',
'messaging','other_services', 'social_media',
'voice'])
}
# Input validation
valid_input = True
error_messages = []
# Validate numeric inputs
numeric_ranges = {
'MONTANT': [0, 1000000],
'FREQUENCE_RECH': [0, 100],
'REVENUE': [0, 1000000],
'ARPU_SEGMENT': [0, 100000],
'FREQUENCE': [0, 100],
'DATA_VOLUME': [0, 100000],
'ON_NET': [0, 100000],
'ORANGE': [0, 100000],
'TIGO': [0, 100000],
'ZONE1': [0, 100000],
'ZONE2': [0, 100000],
'REGULARITY': [0, 100],
'FREQ_TOP_PACK': [0, 100]
}
for feature, value in input_features.items():
range_min, range_max = numeric_ranges.get(feature, [None, None])
if range_min is not None and range_max is not None:
if not range_min <= value <= range_max:
valid_input = False
error_messages.append(f"{feature} should be between {range_min} and {range_max}.")
#Churn Prediction
def predict_churn(input_data, model):
# Preprocess the input data
preprocessed_data = preprocess_input(input_data)
# Calculate churn probabilities using the model
probabilities = model.predict_proba(preprocessed_data)
# Determine churn labels based on the model type
if model_type == "logistic_regression":
churn_labels = ["No Churn", "Churn"]
#elif model_type == "ComplementNB":
churn_labels = ["Churn", "No Churn"]
# Extract churn probability for the first sample
churn_probability = probabilities[0]
# Create a dictionary mapping churn labels to their indices
churn_indices = {label: idx for idx, label in enumerate(churn_labels)}
# Determine the index with the highest churn probability
churn_index = np.argmax(churn_probability)
# Return churn labels, churn probabilities, churn indices, and churn index
return churn_labels, churn_probability, churn_indices, churn_index
# Predict churn based on user input
if st.sidebar.button('Predict Churn'):
try:
with st.spinner("Wait, Results loading..."):
# Simulate a long-running process
progress_bar = st.progress(0)
step = 20 # A big step will reduce the execution time
for i in range(0, 100, step):
time.sleep(0.1)
progress_bar.progress(i + step)
#churn_labels, churn_probability = predict_churn(input_features, model) # Pass model1 or model2 based on the selected model
churn_labels, churn_probability, churn_indices, churn_index = predict_churn(input_features, model)
st.subheader('CHURN PREDICTION RESULTS')
col1, col2 = st.columns(2)
if churn_labels[churn_index] == "Churn":
churn_prob = churn_probability[churn_index]
with col1:
st.error(f"DANGER! This customer is likely to churn with a probability of {churn_prob * 100:.2f}% 😒")
resized_churn_image = Image.open('Churn.jpeg')
resized_churn_image = resized_churn_image.resize((350, 300)) # Adjust the width and height as desired
st.image(resized_churn_image)
# Add suggestions for retaining churned customers in the 'Churn' group
with col2:
st.info("ADVICE TO EXPRESSOR MANAGEMENT:\n"
"- Identify Reasons for Churn\n"
"- Offer Incentives\n"
"- Showcase Improvements\n"
"- Gather Feedback\n"
"- Customer Surveys\n"
"- Personalized Recommendations\n"
"- Reestablish Trust\n"
"- Follow-Up Communication\n"
"- Reactivation Campaigns\n"
"- Improve product or service offerings based on customer feedback\n"
" SUMMARY NOTE\n"
"- Remember that winning back churning customers takes time and persistence.\n"
"- It\s crucial to genuinely address their concerns and provide value to rebuild their trust in your business\n"
"- Regularly evaluate the effectiveness of your strategies and adjust them as needed based on customer responses and feedback\n")
else:
churn_prob = churn_probability[churn_index]
with col1:
st.success(f"This customer is a loyal (not churn) with a probability of {churn_prob * 100:.2f}% πŸ˜€")
resized_not_churn_image = Image.open('NotChurn.png')
resized_not_churn_image = resized_not_churn_image.resize((350, 300)) # Adjust the width and height as desired
st.image(resized_not_churn_image)
# Add suggestions for retaining churned customers in the 'Churn' group
with col2:
st.info("ADVICE TO EXPRESSOR MANAGEMENT\n"
"- Quality Products/Services\n"
"- Personalized Experience\n"
"- Loyalty Programs\n"
"- Excellent Customer Service\n"
"- Exclusive Content\n"
"- Early Access\n"
"- Personal Thank-You Notes\n"
"- Surprise Gifts or Discounts\n"
"- Feedback Opportunities\n"
"- Community Engagement\n"
"- Anniversary Celebrations\n"
"- Refer-a-Friend Programs\n"
"SUMMARY NOTE\n"
"- Remember that the key to building lasting loyalty is consistency.\n"
"- Continuously demonstrate your commitment to meeting customers needs and enhancing their experience.\n"
"- Regularly assess the effectiveness of your loyalty initiatives and adapt them based on customer feedback and preferences.")
st.subheader('Churn Probability')
# Create a donut chart to display probabilities
fig = go.Figure(data=[go.Pie(
labels=churn_labels,
values=churn_probability,
hole=0.5,
textinfo='label+percent',
marker=dict(colors=['#FFA07A', '#6495ED', '#FFD700', '#32CD32', '#FF69B4', '#8B008B']))])
fig.update_traces(
hoverinfo='label+percent',
textfont_size=12,
textposition='inside',
texttemplate='%{label}: %{percent:.2f}%'
)
fig.update_layout(
title='Churn Probability',
title_x=0.5,
showlegend=False,
width=500,
height=500
)
st.plotly_chart(fig, use_container_width=True)
# Calculate the average churn rate (replace with your actual value)
st.subheader('Customer Churn Probability Comparison')
average_churn_rate = 19
# Convert the overall churn rate to churn probability
main_data_churn_probability = average_churn_rate / 100
# Retrieve the predicted churn probability for the selected customer
predicted_churn_prob = churn_probability[churn_index]
if churn_labels[churn_index] == "Churn":
churn_prob = churn_probability[churn_index]
# Create a bar chart comparing the churn probability with the average churn rate
labels = ['Churn Probability', 'Average Churn Probability']
values = [predicted_churn_prob, main_data_churn_probability]
fig = go.Figure(data=[go.Bar(x=labels, y=values)])
fig.update_layout(
xaxis_title='Churn Probability',
yaxis_title='Probability',
title='Comparison with Average Churn Rate',
yaxis=dict(range=[0, 1]) # Set the y-axis limits between 0 and 1
)
# Add explanations
if predicted_churn_prob > main_data_churn_probability:
churn_comparison = "higher"
elif predicted_churn_prob < main_data_churn_probability:
churn_comparison = "lower"
else:
churn_comparison = "equal"
explanation = f"This compares the churn probability of the selected customer " \
f"with the average churn rate of all customers. It provides insights into how the " \
f"individual customer's churn likelihood ({predicted_churn_prob:.2f}) compares to the " \
f"overall trend. The 'Churn Probability' represents the likelihood of churn " \
f"for the selected customer, while the 'Average Churn Rate' represents the average " \
f"churn rate across all customers ({main_data_churn_probability:.2f}).\n\n" \
f"The customer's churn rate is {churn_comparison} than the average churn rate."
st.plotly_chart(fig)
st.write(explanation)
else:
# Create a bar chart comparing the no-churn probability with the average churn rate
labels = ['No-Churn Probability', 'Average Churn Probability']
values = [1 - predicted_churn_prob, main_data_churn_probability]
fig = go.Figure(data=[go.Bar(x=labels, y=values)])
fig.update_layout(
xaxis_title='Churn Probability',
yaxis_title='Probability',
title='Comparison with Average Churn Rate',
yaxis=dict(range=[0, 1]) # Set the y-axis limits between 0 and 1
)
explanation = f"This bar chart compares the churn probability of the selected customer " \
f"with the average churn rate of all customers. It provides insights into how the " \
f"individual customer's churn likelihood ({predicted_churn_prob:.2f}) compares to the " \
f"overall trend." \
f"The prediction indicates that the customer is not likely to churn. " \
f"The churn probability is lower than the no-churn probability."
st.plotly_chart(fig)
st.write(explanation)
except Exception as e:
st.error(f"An error occurred: {str(e)}")