Added my Project Files, Deployed my application
Browse files- Churn.jpeg +0 -0
- NotChurn.png +0 -0
- app.py +324 -0
- bg.png +0 -0
- cat_imputer.joblib +3 -0
- encoder.joblib +3 -0
- lr_smote_model.joblib +3 -0
- numerical_imputer.joblib +3 -0
- requirements.txt +13 -0
- scaler.joblib +3 -0
- welcome.png +0 -0
Churn.jpeg
ADDED
NotChurn.png
ADDED
app.py
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import plotly.graph_objects as go
|
6 |
+
from PIL import Image
|
7 |
+
import time
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
|
12 |
+
num_imputer = joblib.load('numerical_imputer.joblib')
|
13 |
+
cat_imputer = joblib.load('cat_imputer.joblib')
|
14 |
+
encoder = joblib.load('encoder.joblib')
|
15 |
+
scaler = joblib.load('scaler.joblib')
|
16 |
+
lr_model = joblib.load('lr_smote_model.joblib')
|
17 |
+
|
18 |
+
|
19 |
+
def preprocess_input(input_data):
|
20 |
+
input_df = pd.DataFrame(input_data, index=[0])
|
21 |
+
|
22 |
+
cat_columns = [col for col in input_df.columns if input_df[col].dtype == 'object']
|
23 |
+
num_columns = [col for col in input_df.columns if input_df[col].dtype != 'object']
|
24 |
+
|
25 |
+
input_df_imputed_cat = cat_imputer.transform(input_df[cat_columns])
|
26 |
+
input_df_imputed_num = num_imputer.transform(input_df[num_columns])
|
27 |
+
|
28 |
+
input_encoded_df = pd.DataFrame(encoder.transform(input_df_imputed_cat).toarray(),
|
29 |
+
columns=encoder.get_feature_names_out(cat_columns))
|
30 |
+
|
31 |
+
input_df_scaled = scaler.transform(input_df_imputed_num)
|
32 |
+
input_scaled_df = pd.DataFrame(input_df_scaled, columns=num_columns)
|
33 |
+
final_df = pd.concat([input_encoded_df, input_scaled_df], axis=1)
|
34 |
+
final_df = final_df.reindex(columns=original_feature_names, fill_value=0)
|
35 |
+
|
36 |
+
return final_df
|
37 |
+
|
38 |
+
|
39 |
+
original_feature_names = ['MONTANT', 'FREQUENCE_RECH', 'REVENUE', 'ARPU_SEGMENT', 'FREQUENCE',
|
40 |
+
'DATA_VOLUME', 'ON_NET', 'ORANGE', 'TIGO', 'ZONE1', 'ZONE2', 'REGULARITY', 'FREQ_TOP_PACK',
|
41 |
+
'REGION_DAKAR', 'REGION_DIOURBEL', 'REGION_FATICK', 'REGION_KAFFRINE', 'REGION_KAOLACK',
|
42 |
+
'REGION_KEDOUGOU', 'REGION_KOLDA', 'REGION_LOUGA', 'REGION_MATAM', 'REGION_SAINT-LOUIS',
|
43 |
+
'REGION_SEDHIOU', 'REGION_TAMBACOUNDA', 'REGION_THIES', 'REGION_ZIGUINCHOR',
|
44 |
+
'TENURE_Long-term', 'TENURE_Medium-term', 'TENURE_Mid-term', 'TENURE_Short-term',
|
45 |
+
'TENURE_Very short-term', 'TOP_PACK_VAS', 'TOP_PACK_data', 'TOP_PACK_international',
|
46 |
+
'TOP_PACK_messaging', 'TOP_PACK_other_services', 'TOP_PACK_social_media',
|
47 |
+
'TOP_PACK_voice']
|
48 |
+
|
49 |
+
# Set up the Streamlit app
|
50 |
+
st.set_page_config(layout="wide")
|
51 |
+
|
52 |
+
# Main page - Churn Prediction
|
53 |
+
st.title('CUSTOMER CHURN PREDICTION APP (CCPA)')
|
54 |
+
|
55 |
+
# Main page - Churn Prediction
|
56 |
+
st.markdown("Churn is a one of the biggest problem in the telecom industry. Research has shown that the average monthly churn rate among the top 4 wireless carriers in the US is 1.9% - 2%")
|
57 |
+
st.image("bg.png", use_column_width=True)
|
58 |
+
|
59 |
+
# How to use
|
60 |
+
st.sidebar.image("welcome.png", use_column_width=True)
|
61 |
+
# st.sidebar.title("ENTER THE DETAILS OF THE CUSTOMER HERE")
|
62 |
+
|
63 |
+
# Define a dictionary of models with their names, actual models, and types
|
64 |
+
models = {
|
65 |
+
'Logistic Regression': {'Logistic Regression': lr_model, 'type': 'logistic_regression'},
|
66 |
+
#'ComplementNB': {'ComplementNB': cnb_model, 'type': 'Complement NB'}
|
67 |
+
}
|
68 |
+
|
69 |
+
# Allow the user to select a model from the sidebar
|
70 |
+
model_name = st.sidebar.selectbox('Logistic Regression', list(models.keys()))
|
71 |
+
|
72 |
+
# Retrieve the selected model and its type from the dictionary
|
73 |
+
model = models[model_name]['Logistic Regression']
|
74 |
+
model_type = models[model_name]['type']
|
75 |
+
|
76 |
+
|
77 |
+
# Collect input from the user
|
78 |
+
st.sidebar.title('ENTER CUSTOMER DETAILS')
|
79 |
+
input_features = {
|
80 |
+
'MONTANT': st.sidebar.number_input('Top-up Amount (MONTANT)'),
|
81 |
+
'FREQUENCE_RECH': st.sidebar.number_input('No. of Times the Customer Refilled (FREQUENCE_RECH)'),
|
82 |
+
'REVENUE': st.sidebar.number_input('Monthly income of the client (REVENUE)'),
|
83 |
+
'ARPU_SEGMENT': st.sidebar.number_input('Income over 90 days / 3 (ARPU_SEGMENT)'),
|
84 |
+
'FREQUENCE': st.sidebar.number_input('Number of times the client has made an income (FREQUENCE)'),
|
85 |
+
'DATA_VOLUME': st.sidebar.number_input('Number of Connections (DATA_VOLUME)'),
|
86 |
+
'ON_NET': st.sidebar.number_input('Inter Expresso Call (ON_NET)'),
|
87 |
+
'ORANGE': st.sidebar.number_input('Call to Orange (ORANGE)'),
|
88 |
+
'TIGO': st.sidebar.number_input('Call to Tigo (TIGO)'),
|
89 |
+
'ZONE1': st.sidebar.number_input('Call to Zone 1 (ZONE1)'),
|
90 |
+
'ZONE2': st.sidebar.number_input('Call to Zone 2 (ZONE2)'),
|
91 |
+
'REGULARITY': st.sidebar.number_input('Number of Times the Client is Active for 90 Days (REGULARITY)'),
|
92 |
+
'FREQ_TOP_PACK': st.sidebar.number_input('Number of Times the Client has Activated the Top Packs (FREQ_TOP_PACK)'),
|
93 |
+
'REGION': st.sidebar.selectbox('Location of Each Client (REGION)', ['DAKAR','DIOURBEL','FATICK','AFFRINE','KAOLACK',
|
94 |
+
'KEDOUGOU','KOLDA','LOUGA','MATAM','SAINT-LOUIS',
|
95 |
+
'SEDHIOU','TAMBACOUNDA','HIES','ZIGUINCHOR' ]),
|
96 |
+
|
97 |
+
'TENURE': st.sidebar.selectbox('Duration in the Network (TENURE)', ['Long-term','Medium-term','Mid-term','Short-term',
|
98 |
+
'Very short-term']),
|
99 |
+
'TOP_PACK': st.sidebar.selectbox('Most Active Pack (TOP_PACK)', ['VAS', 'data', 'international',
|
100 |
+
'messaging','other_services', 'social_media',
|
101 |
+
'voice'])
|
102 |
+
|
103 |
+
}
|
104 |
+
|
105 |
+
# Input validation
|
106 |
+
valid_input = True
|
107 |
+
error_messages = []
|
108 |
+
|
109 |
+
# Validate numeric inputs
|
110 |
+
numeric_ranges = {
|
111 |
+
'MONTANT': [0, 1000000],
|
112 |
+
'FREQUENCE_RECH': [0, 100],
|
113 |
+
'REVENUE': [0, 1000000],
|
114 |
+
'ARPU_SEGMENT': [0, 100000],
|
115 |
+
'FREQUENCE': [0, 100],
|
116 |
+
'DATA_VOLUME': [0, 100000],
|
117 |
+
'ON_NET': [0, 100000],
|
118 |
+
'ORANGE': [0, 100000],
|
119 |
+
'TIGO': [0, 100000],
|
120 |
+
'ZONE1': [0, 100000],
|
121 |
+
'ZONE2': [0, 100000],
|
122 |
+
'REGULARITY': [0, 100],
|
123 |
+
'FREQ_TOP_PACK': [0, 100]
|
124 |
+
}
|
125 |
+
|
126 |
+
for feature, value in input_features.items():
|
127 |
+
range_min, range_max = numeric_ranges.get(feature, [None, None])
|
128 |
+
if range_min is not None and range_max is not None:
|
129 |
+
if not range_min <= value <= range_max:
|
130 |
+
valid_input = False
|
131 |
+
error_messages.append(f"{feature} should be between {range_min} and {range_max}.")
|
132 |
+
|
133 |
+
#Churn Prediction
|
134 |
+
|
135 |
+
def predict_churn(input_data, model):
|
136 |
+
# Preprocess the input data
|
137 |
+
preprocessed_data = preprocess_input(input_data)
|
138 |
+
|
139 |
+
# Calculate churn probabilities using the model
|
140 |
+
probabilities = model.predict_proba(preprocessed_data)
|
141 |
+
|
142 |
+
# Determine churn labels based on the model type
|
143 |
+
if model_type == "logistic_regression":
|
144 |
+
churn_labels = ["No Churn", "Churn"]
|
145 |
+
#elif model_type == "ComplementNB":
|
146 |
+
churn_labels = ["Churn", "No Churn"]
|
147 |
+
# Extract churn probability for the first sample
|
148 |
+
churn_probability = probabilities[0]
|
149 |
+
|
150 |
+
# Create a dictionary mapping churn labels to their indices
|
151 |
+
churn_indices = {label: idx for idx, label in enumerate(churn_labels)}
|
152 |
+
|
153 |
+
# Determine the index with the highest churn probability
|
154 |
+
churn_index = np.argmax(churn_probability)
|
155 |
+
|
156 |
+
# Return churn labels, churn probabilities, churn indices, and churn index
|
157 |
+
return churn_labels, churn_probability, churn_indices, churn_index
|
158 |
+
|
159 |
+
# Predict churn based on user input
|
160 |
+
if st.sidebar.button('Predict Churn'):
|
161 |
+
try:
|
162 |
+
with st.spinner("Wait, Results loading..."):
|
163 |
+
# Simulate a long-running process
|
164 |
+
progress_bar = st.progress(0)
|
165 |
+
step = 20 # A big step will reduce the execution time
|
166 |
+
for i in range(0, 100, step):
|
167 |
+
time.sleep(0.1)
|
168 |
+
progress_bar.progress(i + step)
|
169 |
+
|
170 |
+
#churn_labels, churn_probability = predict_churn(input_features, model) # Pass model1 or model2 based on the selected model
|
171 |
+
churn_labels, churn_probability, churn_indices, churn_index = predict_churn(input_features, model)
|
172 |
+
|
173 |
+
st.subheader('CHURN PREDICTION RESULTS')
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
col1, col2 = st.columns(2)
|
178 |
+
|
179 |
+
if churn_labels[churn_index] == "Churn":
|
180 |
+
churn_prob = churn_probability[churn_index]
|
181 |
+
with col1:
|
182 |
+
st.error(f"DANGER! This customer is likely to churn with a probability of {churn_prob * 100:.2f}% 😢")
|
183 |
+
resized_churn_image = Image.open('Churn.jpeg')
|
184 |
+
resized_churn_image = resized_churn_image.resize((350, 300)) # Adjust the width and height as desired
|
185 |
+
st.image(resized_churn_image)
|
186 |
+
# Add suggestions for retaining churned customers in the 'Churn' group
|
187 |
+
with col2:
|
188 |
+
st.info("ADVICE TO EXPRESSOR MANAGEMENT:\n"
|
189 |
+
"- Identify Reasons for Churn\n"
|
190 |
+
"- Offer Incentives\n"
|
191 |
+
"- Showcase Improvements\n"
|
192 |
+
"- Gather Feedback\n"
|
193 |
+
"- Customer Surveys\n"
|
194 |
+
"- Personalized Recommendations\n"
|
195 |
+
"- Reestablish Trust\n"
|
196 |
+
"- Follow-Up Communication\n"
|
197 |
+
"- Reactivation Campaigns\n"
|
198 |
+
"- Improve product or service offerings based on customer feedback\n"
|
199 |
+
" SUMMARY NOTE\n"
|
200 |
+
"- Remember that winning back churning customers takes time and persistence.\n"
|
201 |
+
"- It\s crucial to genuinely address their concerns and provide value to rebuild their trust in your business\n"
|
202 |
+
"- Regularly evaluate the effectiveness of your strategies and adjust them as needed based on customer responses and feedback\n")
|
203 |
+
else:
|
204 |
+
churn_prob = churn_probability[churn_index]
|
205 |
+
with col1:
|
206 |
+
st.success(f"This customer is a loyal (not churn) with a probability of {churn_prob * 100:.2f}% 😀")
|
207 |
+
resized_not_churn_image = Image.open('NotChurn.png')
|
208 |
+
resized_not_churn_image = resized_not_churn_image.resize((350, 300)) # Adjust the width and height as desired
|
209 |
+
st.image(resized_not_churn_image)
|
210 |
+
# Add suggestions for retaining churned customers in the 'Churn' group
|
211 |
+
with col2:
|
212 |
+
st.info("ADVICE TO EXPRESSOR MANAGEMENT\n"
|
213 |
+
"- Quality Products/Services\n"
|
214 |
+
"- Personalized Experience\n"
|
215 |
+
"- Loyalty Programs\n"
|
216 |
+
"- Excellent Customer Service\n"
|
217 |
+
"- Exclusive Content\n"
|
218 |
+
"- Early Access\n"
|
219 |
+
"- Personal Thank-You Notes\n"
|
220 |
+
"- Surprise Gifts or Discounts\n"
|
221 |
+
"- Feedback Opportunities\n"
|
222 |
+
"- Community Engagement\n"
|
223 |
+
"- Anniversary Celebrations\n"
|
224 |
+
"- Refer-a-Friend Programs\n"
|
225 |
+
"SUMMARY NOTE\n"
|
226 |
+
"- Remember that the key to building lasting loyalty is consistency.\n"
|
227 |
+
"- Continuously demonstrate your commitment to meeting customers needs and enhancing their experience.\n"
|
228 |
+
"- Regularly assess the effectiveness of your loyalty initiatives and adapt them based on customer feedback and preferences.")
|
229 |
+
|
230 |
+
st.subheader('Churn Probability')
|
231 |
+
|
232 |
+
# Create a donut chart to display probabilities
|
233 |
+
fig = go.Figure(data=[go.Pie(
|
234 |
+
labels=churn_labels,
|
235 |
+
values=churn_probability,
|
236 |
+
hole=0.5,
|
237 |
+
textinfo='label+percent',
|
238 |
+
marker=dict(colors=['#FFA07A', '#6495ED', '#FFD700', '#32CD32', '#FF69B4', '#8B008B']))])
|
239 |
+
|
240 |
+
fig.update_traces(
|
241 |
+
hoverinfo='label+percent',
|
242 |
+
textfont_size=12,
|
243 |
+
textposition='inside',
|
244 |
+
texttemplate='%{label}: %{percent:.2f}%'
|
245 |
+
)
|
246 |
+
|
247 |
+
fig.update_layout(
|
248 |
+
title='Churn Probability',
|
249 |
+
title_x=0.5,
|
250 |
+
showlegend=False,
|
251 |
+
width=500,
|
252 |
+
height=500
|
253 |
+
)
|
254 |
+
|
255 |
+
st.plotly_chart(fig, use_container_width=True)
|
256 |
+
|
257 |
+
# Calculate the average churn rate (replace with your actual value)
|
258 |
+
|
259 |
+
st.subheader('Customer Churn Probability Comparison')
|
260 |
+
|
261 |
+
average_churn_rate = 19
|
262 |
+
|
263 |
+
# Convert the overall churn rate to churn probability
|
264 |
+
main_data_churn_probability = average_churn_rate / 100
|
265 |
+
|
266 |
+
# Retrieve the predicted churn probability for the selected customer
|
267 |
+
predicted_churn_prob = churn_probability[churn_index]
|
268 |
+
|
269 |
+
if churn_labels[churn_index] == "Churn":
|
270 |
+
churn_prob = churn_probability[churn_index]
|
271 |
+
# Create a bar chart comparing the churn probability with the average churn rate
|
272 |
+
labels = ['Churn Probability', 'Average Churn Probability']
|
273 |
+
values = [predicted_churn_prob, main_data_churn_probability]
|
274 |
+
|
275 |
+
fig = go.Figure(data=[go.Bar(x=labels, y=values)])
|
276 |
+
fig.update_layout(
|
277 |
+
xaxis_title='Churn Probability',
|
278 |
+
yaxis_title='Probability',
|
279 |
+
title='Comparison with Average Churn Rate',
|
280 |
+
yaxis=dict(range=[0, 1]) # Set the y-axis limits between 0 and 1
|
281 |
+
)
|
282 |
+
|
283 |
+
# Add explanations
|
284 |
+
if predicted_churn_prob > main_data_churn_probability:
|
285 |
+
churn_comparison = "higher"
|
286 |
+
elif predicted_churn_prob < main_data_churn_probability:
|
287 |
+
churn_comparison = "lower"
|
288 |
+
else:
|
289 |
+
churn_comparison = "equal"
|
290 |
+
|
291 |
+
explanation = f"This compares the churn probability of the selected customer " \
|
292 |
+
f"with the average churn rate of all customers. It provides insights into how the " \
|
293 |
+
f"individual customer's churn likelihood ({predicted_churn_prob:.2f}) compares to the " \
|
294 |
+
f"overall trend. The 'Churn Probability' represents the likelihood of churn " \
|
295 |
+
f"for the selected customer, while the 'Average Churn Rate' represents the average " \
|
296 |
+
f"churn rate across all customers ({main_data_churn_probability:.2f}).\n\n" \
|
297 |
+
f"The customer's churn rate is {churn_comparison} than the average churn rate."
|
298 |
+
|
299 |
+
st.plotly_chart(fig)
|
300 |
+
st.write(explanation)
|
301 |
+
else:
|
302 |
+
# Create a bar chart comparing the no-churn probability with the average churn rate
|
303 |
+
labels = ['No-Churn Probability', 'Average Churn Probability']
|
304 |
+
values = [1 - predicted_churn_prob, main_data_churn_probability]
|
305 |
+
|
306 |
+
fig = go.Figure(data=[go.Bar(x=labels, y=values)])
|
307 |
+
fig.update_layout(
|
308 |
+
xaxis_title='Churn Probability',
|
309 |
+
yaxis_title='Probability',
|
310 |
+
title='Comparison with Average Churn Rate',
|
311 |
+
yaxis=dict(range=[0, 1]) # Set the y-axis limits between 0 and 1
|
312 |
+
)
|
313 |
+
|
314 |
+
explanation = f"This bar chart compares the churn probability of the selected customer " \
|
315 |
+
f"with the average churn rate of all customers. It provides insights into how the " \
|
316 |
+
f"individual customer's churn likelihood ({predicted_churn_prob:.2f}) compares to the " \
|
317 |
+
f"overall trend." \
|
318 |
+
f"The prediction indicates that the customer is not likely to churn. " \
|
319 |
+
f"The churn probability is lower than the no-churn probability."
|
320 |
+
|
321 |
+
st.plotly_chart(fig)
|
322 |
+
st.write(explanation)
|
323 |
+
except Exception as e:
|
324 |
+
st.error(f"An error occurred: {str(e)}")
|
bg.png
ADDED
cat_imputer.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16d4765786a38f0c2a305bbe0e981093db2df9d6647e08083f6d108c4279d73b
|
3 |
+
size 1010
|
encoder.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05664412f8ceae36c79746234dfc86556cfd9ac9d0dce90832b32aa180faed24
|
3 |
+
size 1684
|
lr_smote_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f9deacd488a93280e5004d9bbc57ba1fd2e49f7bf12b095cf9c8bfc5d27a7b5
|
3 |
+
size 2255
|
numerical_imputer.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c85c1dee62ef35b8270b292ba21551ff6e37f49be186aadbf80c4ad19932132d
|
3 |
+
size 1071
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
joblib==1.2.0
|
2 |
+
numpy==1.22.4
|
3 |
+
pandas==1.5.3
|
4 |
+
shap==0.41.0
|
5 |
+
streamlit==1.22.0
|
6 |
+
scikit-learn==1.2.2
|
7 |
+
matplotlib==3.7.1
|
8 |
+
shap==0.41.0
|
9 |
+
uvicorn==0.22.0
|
10 |
+
pydantic==1.10.7
|
11 |
+
jinja2==3.0.2
|
12 |
+
python-multipart==0.0.6
|
13 |
+
plotly==5.16.1
|
scaler.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ff59c6234eaf5c0b182ddd3a80a4435bc6f3528da87d4461c0fce1e90d54df9
|
3 |
+
size 1199
|
welcome.png
ADDED