import os import json import gradio as gr from datetime import datetime from huggingface_hub import InferenceClient # Constants DEFAULT_MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.1" HF_TOKEN = os.environ.get("HF_TOKEN") LOG_FILE = "chat_log.json" def chat_with_model(system_prompt, user_message, max_tokens=500, model_id=""): """ Generate a chat completion using the specified or default Mistral model. Args: system_prompt (str): The system prompt to set the context. user_message (str): The user's input message. max_tokens (int): Maximum number of tokens to generate. model_id (str): The model ID to use. If empty, uses the default model. Returns: str: The model's response. """ model_id = model_id.strip() if model_id else DEFAULT_MODEL_ID client = InferenceClient(model_id, token=HF_TOKEN) messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_message} ] response = "" try: for message in client.chat_completion( messages=messages, max_tokens=max_tokens, stream=True ): response += message.choices[0].delta.content or "" except Exception as e: response = f"Error: {str(e)}" # Log the input and output log_chat(system_prompt, user_message, response, max_tokens, model_id) return response def log_chat(system_prompt, user_message, response, max_tokens, model_id): """ Log the chat details to a JSON file. """ log_entry = { "timestamp": datetime.now().isoformat(), "system_prompt": system_prompt, "user_message": user_message, "response": response, "max_tokens": max_tokens, "model_id": model_id } try: # Read existing log file if it exists if os.path.exists(LOG_FILE): with open(LOG_FILE, 'r') as f: log_data = json.load(f) else: log_data = [] # Append new entry log_data.append(log_entry) # Write updated log back to file with open(LOG_FILE, 'w') as f: json.dump(log_data, f, indent=2) except Exception as e: print(f"Error logging chat: {str(e)}") def create_gradio_interface(): """Create and configure the Gradio interface.""" return gr.Interface( fn=chat_with_model, inputs=[ gr.Textbox(label="System Prompt", placeholder="Enter the system prompt here..."), gr.Textbox(label="User Message", placeholder="Ask a question..."), gr.Slider(minimum=50, maximum=1000, value=500, step=50, label="Max Tokens"), gr.Textbox(label="Model ID", placeholder=f"Enter model ID (default: {DEFAULT_MODEL_ID})") ], outputs=gr.Textbox(label="Response"), title="Mistral Chatbot", description="Chat with Mistral model using your own system prompts and choose your model.", examples=[ ["You are a helpful AI assistant.", "What is the capital of France?", 500, ""], ["You are an expert in Python programming.", "Explain list comprehensions.", 500, ""] ] ) if __name__ == "__main__": iface = create_gradio_interface() iface.launch(show_api=True, share=False)