File size: 12,424 Bytes
6afc5c1
 
 
 
 
 
 
 
 
 
7d02898
6afc5c1
 
0b5fbaf
 
6afc5c1
da17888
 
 
 
 
 
6afc5c1
 
 
 
 
 
2da1426
da17888
6afc5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da17888
6afc5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5fbaf
da17888
6afc5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da17888
 
 
 
 
 
 
6afc5c1
 
 
 
 
7d02898
da17888
 
 
 
 
 
 
 
0b5fbaf
 
da17888
0b5fbaf
 
 
6afc5c1
7d02898
0b5fbaf
 
da17888
 
7d02898
 
6afc5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2da1426
da17888
6afc5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5fbaf
 
 
 
 
da17888
 
 
 
 
6afc5c1
 
 
 
0b5fbaf
6afc5c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b5fbaf
da17888
6afc5c1
 
 
 
 
39052a7
6afc5c1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import argparse
import os
import json
import gradio as gr
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
from PIL import Image

TITLE = "Tagger"
DESCRIPTION = """
"""
implications_list_path = './implications_list.json'
related_feature_path = './related_feature.json'

with open(related_feature_path, 'r') as f:
    related_feature_list = json.load(f)

with open(implications_list_path, 'r') as f:
    implications_list = json.load(f)

#HF_TOKEN = os.environ["HF_TOKEN"]

# Dataset v3 series of models:
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
VIT_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-large-tagger-v3"
EVA02_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"

# Dataset v2 series of models:
MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"

# Files to download from the repos
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"

# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
    "0_0",
    "(o)_(o)",
    "+_+",
    "+_-",
    "._.",
    "<o>_<o>",
    "<|>_<|>",
    "=_=",
    ">_<",
    "3_3",
    "6_9",
    ">_o",
    "@_@",
    "^_^",
    "o_o",
    "u_u",
    "x_x",
    "|_|",
    "||_||",
]


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument("--score-slider-step", type=float, default=0.05)
    parser.add_argument("--score-general-threshold", type=float, default=0.4)
    parser.add_argument("--score-character-threshold", type=float, default=0.8)
    parser.add_argument("--share", action="store_true")
    return parser.parse_args()


def load_labels(dataframe) -> list[str]:
    name_series = dataframe["name"]
    tag_names = name_series.tolist()

    rating_indexes = list(np.where(dataframe["category"] == 9)[0])
    general_indexes = list(np.where(dataframe["category"] == 0)[0])
    character_indexes = list(np.where(dataframe["category"] == 4)[0])
    return tag_names, rating_indexes, general_indexes, character_indexes


def mcut_threshold(probs):
    """
    Maximum Cut Thresholding (MCut)
    Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
     for Multi-label Classification. In 11th International Symposium, IDA 2012
     (pp. 172-183).
    """
    sorted_probs = probs[probs.argsort()[::-1]]
    difs = sorted_probs[:-1] - sorted_probs[1:]
    t = difs.argmax()
    thresh = (sorted_probs[t] + sorted_probs[t + 1]) / 2
    return thresh


class Predictor:
    def __init__(self):
        self.model_target_size = None
        self.last_loaded_repo = None

    def download_model(self, model_repo):
        csv_path = huggingface_hub.hf_hub_download(
            model_repo,
            LABEL_FILENAME,
            #use_auth_token=HF_TOKEN,
        )
        model_path = huggingface_hub.hf_hub_download(
            model_repo,
            MODEL_FILENAME,
            #use_auth_token=HF_TOKEN,
        )
        return csv_path, model_path

    def load_model(self, model_repo):
        if model_repo == self.last_loaded_repo:
            return

        csv_path, model_path = self.download_model(model_repo)

        tags_df = pd.read_csv(csv_path)
        sep_tags = load_labels(tags_df)

        self.tag_names = sep_tags[0]
        self.rating_indexes = sep_tags[1]
        self.general_indexes = sep_tags[2]
        self.character_indexes = sep_tags[3]

        model = rt.InferenceSession(model_path)
        _, height, width, _ = model.get_inputs()[0].shape
        self.model_target_size = height

        self.last_loaded_repo = model_repo
        self.model = model

    def prepare_image(self, image):
        target_size = self.model_target_size

        canvas = Image.new("RGBA", image.size, (255, 255, 255))
        canvas.alpha_composite(image)
        image = canvas.convert("RGB")

        # Pad image to square
        image_shape = image.size
        max_dim = max(image_shape)
        pad_left = (max_dim - image_shape[0]) // 2
        pad_top = (max_dim - image_shape[1]) // 2

        padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
        padded_image.paste(image, (pad_left, pad_top))

        # Resize
        if max_dim != target_size:
            padded_image = padded_image.resize(
                (target_size, target_size),
                Image.BICUBIC,
            )

        # Convert to numpy array
        image_array = np.asarray(padded_image, dtype=np.float32)

        # Convert PIL-native RGB to BGR
        image_array = image_array[:, :, ::-1]

        return np.expand_dims(image_array, axis=0)

    def predict(
        self,
        image,
        model_repo,
        general_thresh,
        general_mcut_enabled,
        character_thresh,
        character_mcut_enabled,
        character_string,
        character_output
    ):
        self.load_model(model_repo)

        image = self.prepare_image(image)

        input_name = self.model.get_inputs()[0].name
        label_name = self.model.get_outputs()[0].name
        preds = self.model.run([label_name], {input_name: image})[0]

        labels = list(zip(self.tag_names, preds[0].astype(float)))

        # First 4 labels are actually ratings: pick one with argmax
        ratings_names = [labels[i] for i in self.rating_indexes]
        rating = dict(ratings_names)

        # Then we have general tags: pick any where prediction confidence > threshold
        general_names = [labels[i] for i in self.general_indexes]

        if general_mcut_enabled:
            general_probs = np.array([x[1] for x in general_names])
            general_thresh = mcut_threshold(general_probs)

        general_res = [x for x in general_names if x[1] > general_thresh]
        general_res = dict(general_res)

        to_delete = set()
        for key in general_res.keys():
            if key in implications_list:
                to_delete.update(implications_list[key])

        for key in to_delete:
            general_res.pop(key, None)  

        # Everything else is characters: pick any where prediction confidence > threshold
        character_names = [labels[i] for i in self.character_indexes]

        if character_mcut_enabled:
            character_probs = np.array([x[1] for x in character_names])
            character_thresh = mcut_threshold(character_probs)
            character_thresh = max(0.15, character_thresh)

        character_res = [x for x in character_names if x[1] > character_thresh]
        character_res = dict(character_res)

        character_strings = sorted(
            character_res.items(),
            key=lambda x: x[1],
            reverse=True,
        )
        character_strings = [x[0] for x in character_strings]

        sorted_general_strings = sorted(
            general_res.items(),
            key=lambda x: x[1],
            reverse=True,
        )

        character_list = []
        if character_string != '':
            character_list = character_string.lower().split(', ')

        if character_output:
            character_combined = character_list + character_strings
        else:
            character_combined = character_list

        feature_delete_list = []
        for tag in character_combined:
            if tag in related_feature_list:  
                feature_delete_list.extend(related_feature_list[tag])

        sorted_general_strings = [x[0] for x in sorted_general_strings]

        sorted_general_strings = [x for x in sorted_general_strings if x not in feature_delete_list]

        sorted_general_strings = character_combined + sorted_general_strings

        sorted_general_strings = [x.replace("_", " ") if x not in kaomojis else x for x in sorted_general_strings]

        sorted_general_strings = (
            ", ".join(sorted_general_strings).replace("(", "\(").replace(")", "\)")
        )

        return sorted_general_strings, rating, character_res, general_res

def main():
    args = parse_args()

    predictor = Predictor()

    dropdown_list = [
        SWINV2_MODEL_DSV3_REPO,
        CONV_MODEL_DSV3_REPO,
        VIT_MODEL_DSV3_REPO,
        VIT_LARGE_MODEL_DSV3_REPO,
        EVA02_LARGE_MODEL_DSV3_REPO,
    ]

    with gr.Blocks(title=TITLE) as demo:
        with gr.Column():
            gr.Markdown(
                value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>"
            )
            gr.Markdown(value=DESCRIPTION)
            with gr.Row():
                with gr.Column(variant="panel"):
                    image = gr.Image(type="pil", image_mode="RGBA", label="Input")
                    model_repo = gr.Dropdown(
                        dropdown_list,
                        value=SWINV2_MODEL_DSV3_REPO,
                        label="Model",
                    )
                    with gr.Row():
                        general_thresh = gr.Slider(
                            0,
                            1,
                            step=args.score_slider_step,
                            value=args.score_general_threshold,
                            label="General Tags Threshold",
                            scale=3,
                        )
                        general_mcut_enabled = gr.Checkbox(
                            value=False,
                            label="Use MCut threshold",
                            scale=1,
                        )
                    with gr.Row():
                        character_thresh = gr.Slider(
                            0,
                            1,
                            step=args.score_slider_step,
                            value=args.score_character_threshold,
                            label="Character Tags Threshold",
                            scale=3,
                        )
                        character_mcut_enabled = gr.Checkbox(
                            value=False,
                            label="Use MCut threshold",
                            scale=1,
                        )
                    with gr.Row():
                        character_string = gr.Textbox(
                        label= "Character",
                        scale=3,
                        )
                        character_output = gr.Checkbox(
                            value=True,
                            label="Use Output (characters)",
                            scale=1,
                        )
                    with gr.Row():
                        clear = gr.ClearButton(
                            components=[
                                image,
                                character_string,
                            ],
                            variant="secondary",
                            size="lg",
                        )
                        submit = gr.Button(value="Submit", variant="primary", size="lg")
                with gr.Column(variant="panel"):
                    sorted_general_strings = gr.Textbox(label="Output (string)")
                    rating = gr.Label(label="Rating")
                    character_res = gr.Label(label="Output (characters)")
                    general_res = gr.Label(label="Output (tags)")
                    clear.add(
                        [
                            sorted_general_strings,
                            rating,
                            character_res,
                            general_res,
                        ]
                    )

        submit.click(
            predictor.predict,
            inputs=[
                image,
                model_repo,
                general_thresh,
                general_mcut_enabled,
                character_thresh,
                character_mcut_enabled,
                character_string,
                character_output
            ],
            outputs=[sorted_general_strings, rating, character_res, general_res],
        )

    demo.queue(max_size=10)
    demo.launch()


if __name__ == "__main__":
    main()