File size: 6,567 Bytes
0a3525d
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
 
 
 
 
0a3525d
 
 
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
 
 
 
 
 
 
69e8a46
0a3525d
 
 
 
 
69e8a46
 
 
 
0a3525d
 
69e8a46
0a3525d
69e8a46
0a3525d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from typing import Any, Optional

import lightning as L
import torch
import torch.nn.functional as F
from lightning.pytorch.utilities.types import OptimizerLRScheduler

import fish_speech.utils as utils
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID
from fish_speech.models.text2semantic.llama import NaiveTransformer

log = utils.RankedLogger(__name__, rank_zero_only=True)


class TextToSemantic(L.LightningModule):
    def __init__(
        self,
        model: NaiveTransformer,
        optimizer: Any,
        lr_scheduler: Any,
    ):
        super().__init__()

        self.model = model
        self.optimizer_builder = optimizer
        self.lr_scheduler_builder = lr_scheduler

    def forward(self, x):
        return self.model(x)

    def on_save_checkpoint(self, checkpoint):
        # Save only LoRA parameters
        state_dict = checkpoint["state_dict"]
        use_lora = any("lora" in name for name in state_dict.keys())
        if not use_lora:
            return

        for name in list(state_dict.keys()):
            if "lora" not in name:
                state_dict.pop(name)

    def configure_optimizers(self) -> OptimizerLRScheduler:
        # Get weight decay parameters
        weight_decay_parameters, other_parameters = [], []
        for name, param in self.named_parameters():
            if ".bias" in name or "norm.weight" in name or ".embeddings." in name:
                other_parameters.append(param)
            else:
                weight_decay_parameters.append(param)

        optimizer = self.optimizer_builder(
            [
                {"params": weight_decay_parameters},
                {"params": other_parameters, "weight_decay": 0.0},
            ]
        )

        # Print the parameters and their weight decay
        for i in optimizer.param_groups:
            log.info(
                f"Set weight decay: {i['weight_decay']} for {len(i['params'])} parameters"
            )

        lr_scheduler = self.lr_scheduler_builder(optimizer)

        return {
            "optimizer": optimizer,
            "lr_scheduler": {
                "scheduler": lr_scheduler,
                "interval": "step",
            },
        }

    # Copied from https://github.com/eric-mitchell/direct-preference-optimization/blob/main/trainers.py#L90
    def get_batch_logps(
        self,
        logits: torch.FloatTensor,
        labels: torch.LongTensor,
        average_log_prob: bool = False,
    ) -> torch.FloatTensor:
        """Compute the log probabilities of the given labels under the given logits.

        Args:
            logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, codebook_size, vocab_size)
            labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length, codebook_size)
            average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.

        Returns:
            A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
        """
        assert logits.shape[:-1] == labels.shape

        labels = labels.clone()
        loss_mask = labels != -100

        # dummy token; we'll ignore the losses on these tokens later
        labels[labels == -100] = 0

        per_token_logps = torch.gather(
            logits.log_softmax(-1), dim=-1, index=labels.unsqueeze(-1)
        ).squeeze(-1)

        if average_log_prob:
            return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
        else:
            return (per_token_logps * loss_mask).sum(-1)

    def _step(self, batch, batch_idx, stage: str):
        is_train = stage == "train"

        if is_train:
            # Key part to make lora work
            # Otherwise the parameters are merged, which lead to incorrect gradients
            self.model.train()

        # Do positive and negative samples in the same batch to speed up training
        labels = batch["labels"]
        outputs = self.model(
            inp=batch["inputs"],
            key_padding_mask=batch["attention_masks"],
        )
        token_logits = outputs.token_logits
        codebook_logits = outputs.codebook_logits

        # Generate labels
        base_loss = F.cross_entropy(
            token_logits.view(-1, token_logits.size(-1)),
            labels[:, 0].reshape(-1),
            ignore_index=-100,
        )

        codebook_labels = labels[:, 1 : 1 + self.model.config.num_codebooks].mT
        semantic_loss = F.cross_entropy(
            codebook_logits.view(-1, codebook_logits.size(-1)),
            codebook_labels.reshape(-1),
            ignore_index=-100,
        )

        loss = base_loss + semantic_loss

        self.log(
            f"{stage}/loss",
            loss,
            on_step=is_train,
            on_epoch=not is_train,
            prog_bar=True,
            logger=True,
            sync_dist=not is_train,
        )

        self.log(
            f"{stage}/base_loss",
            base_loss,
            on_step=is_train,
            on_epoch=not is_train,
            prog_bar=False,
            logger=True,
            sync_dist=not is_train,
        )

        self.log(
            f"{stage}/semantic_loss",
            semantic_loss,
            on_step=is_train,
            on_epoch=not is_train,
            prog_bar=False,
            logger=True,
            sync_dist=not is_train,
        )

        # Top-5 accuracy
        accuracy = self.get_accuracy(codebook_logits, codebook_labels)
        self.log(
            f"{stage}/top_5_accuracy",
            accuracy,
            on_step=is_train,
            on_epoch=not is_train,
            prog_bar=True,
            logger=True,
            sync_dist=not is_train,
        )

        return loss

    def get_accuracy(self, logits, labels):
        mask = (labels != -100) & (labels != CODEBOOK_PAD_TOKEN_ID)
        if mask.sum() == 0:
            return torch.tensor(0.0, device=logits.device)

        _, indices = logits.topk(5, dim=-1)
        correct = indices.eq(labels.unsqueeze(-1))
        correct[~mask] = 0
        correct = correct.sum()
        accuracy = correct / mask.sum()

        return accuracy

    def training_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "train")

    def validation_step(self, batch, batch_idx):
        return self._step(batch, batch_idx, "val")