Spaces:
Paused
Paused
File size: 6,567 Bytes
0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d 69e8a46 0a3525d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
from typing import Any, Optional
import lightning as L
import torch
import torch.nn.functional as F
from lightning.pytorch.utilities.types import OptimizerLRScheduler
import fish_speech.utils as utils
from fish_speech.conversation import CODEBOOK_PAD_TOKEN_ID
from fish_speech.models.text2semantic.llama import NaiveTransformer
log = utils.RankedLogger(__name__, rank_zero_only=True)
class TextToSemantic(L.LightningModule):
def __init__(
self,
model: NaiveTransformer,
optimizer: Any,
lr_scheduler: Any,
):
super().__init__()
self.model = model
self.optimizer_builder = optimizer
self.lr_scheduler_builder = lr_scheduler
def forward(self, x):
return self.model(x)
def on_save_checkpoint(self, checkpoint):
# Save only LoRA parameters
state_dict = checkpoint["state_dict"]
use_lora = any("lora" in name for name in state_dict.keys())
if not use_lora:
return
for name in list(state_dict.keys()):
if "lora" not in name:
state_dict.pop(name)
def configure_optimizers(self) -> OptimizerLRScheduler:
# Get weight decay parameters
weight_decay_parameters, other_parameters = [], []
for name, param in self.named_parameters():
if ".bias" in name or "norm.weight" in name or ".embeddings." in name:
other_parameters.append(param)
else:
weight_decay_parameters.append(param)
optimizer = self.optimizer_builder(
[
{"params": weight_decay_parameters},
{"params": other_parameters, "weight_decay": 0.0},
]
)
# Print the parameters and their weight decay
for i in optimizer.param_groups:
log.info(
f"Set weight decay: {i['weight_decay']} for {len(i['params'])} parameters"
)
lr_scheduler = self.lr_scheduler_builder(optimizer)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": lr_scheduler,
"interval": "step",
},
}
# Copied from https://github.com/eric-mitchell/direct-preference-optimization/blob/main/trainers.py#L90
def get_batch_logps(
self,
logits: torch.FloatTensor,
labels: torch.LongTensor,
average_log_prob: bool = False,
) -> torch.FloatTensor:
"""Compute the log probabilities of the given labels under the given logits.
Args:
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, codebook_size, vocab_size)
labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length, codebook_size)
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
Returns:
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
"""
assert logits.shape[:-1] == labels.shape
labels = labels.clone()
loss_mask = labels != -100
# dummy token; we'll ignore the losses on these tokens later
labels[labels == -100] = 0
per_token_logps = torch.gather(
logits.log_softmax(-1), dim=-1, index=labels.unsqueeze(-1)
).squeeze(-1)
if average_log_prob:
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
else:
return (per_token_logps * loss_mask).sum(-1)
def _step(self, batch, batch_idx, stage: str):
is_train = stage == "train"
if is_train:
# Key part to make lora work
# Otherwise the parameters are merged, which lead to incorrect gradients
self.model.train()
# Do positive and negative samples in the same batch to speed up training
labels = batch["labels"]
outputs = self.model(
inp=batch["inputs"],
key_padding_mask=batch["attention_masks"],
)
token_logits = outputs.token_logits
codebook_logits = outputs.codebook_logits
# Generate labels
base_loss = F.cross_entropy(
token_logits.view(-1, token_logits.size(-1)),
labels[:, 0].reshape(-1),
ignore_index=-100,
)
codebook_labels = labels[:, 1 : 1 + self.model.config.num_codebooks].mT
semantic_loss = F.cross_entropy(
codebook_logits.view(-1, codebook_logits.size(-1)),
codebook_labels.reshape(-1),
ignore_index=-100,
)
loss = base_loss + semantic_loss
self.log(
f"{stage}/loss",
loss,
on_step=is_train,
on_epoch=not is_train,
prog_bar=True,
logger=True,
sync_dist=not is_train,
)
self.log(
f"{stage}/base_loss",
base_loss,
on_step=is_train,
on_epoch=not is_train,
prog_bar=False,
logger=True,
sync_dist=not is_train,
)
self.log(
f"{stage}/semantic_loss",
semantic_loss,
on_step=is_train,
on_epoch=not is_train,
prog_bar=False,
logger=True,
sync_dist=not is_train,
)
# Top-5 accuracy
accuracy = self.get_accuracy(codebook_logits, codebook_labels)
self.log(
f"{stage}/top_5_accuracy",
accuracy,
on_step=is_train,
on_epoch=not is_train,
prog_bar=True,
logger=True,
sync_dist=not is_train,
)
return loss
def get_accuracy(self, logits, labels):
mask = (labels != -100) & (labels != CODEBOOK_PAD_TOKEN_ID)
if mask.sum() == 0:
return torch.tensor(0.0, device=logits.device)
_, indices = logits.topk(5, dim=-1)
correct = indices.eq(labels.unsqueeze(-1))
correct[~mask] = 0
correct = correct.sum()
accuracy = correct / mask.sum()
return accuracy
def training_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "train")
def validation_step(self, batch, batch_idx):
return self._step(batch, batch_idx, "val")
|