import json import math from collections import OrderedDict from dataclasses import dataclass from pathlib import Path from typing import Optional import torch import torch.nn as nn from einops import rearrange from loguru import logger from torch import Tensor from torch.nn import functional as F from torch.nn.attention import SDPBackend, sdpa_kernel from torch.utils.checkpoint import checkpoint from transformers import AutoTokenizer from fish_speech.conversation import SEMANTIC_TOKEN from fish_speech.utils import RankedLogger from .lora import LoraConfig, setup_lora log = RankedLogger(__name__, rank_zero_only=True) def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k) @dataclass class BaseModelArgs: model_type: str = "base" vocab_size: int = 32000 n_layer: int = 32 n_head: int = 32 dim: int = 4096 intermediate_size: int = None n_local_heads: int = -1 head_dim: int = 64 rope_base: float = 10000 norm_eps: float = 1e-5 max_seq_len: int = 2048 dropout: float = 0.0 tie_word_embeddings: bool = True attention_qkv_bias: bool = False # Codebook configs codebook_size: int = 160 num_codebooks: int = 4 # Gradient checkpointing use_gradient_checkpointing: bool = True # Initialize the model initializer_range: float = 0.02 def __post_init__(self): if self.n_local_heads == -1: self.n_local_heads = self.n_head if self.intermediate_size is None: hidden_dim = 4 * self.dim n_hidden = int(2 * hidden_dim / 3) self.intermediate_size = find_multiple(n_hidden, 256) self.head_dim = self.dim // self.n_head @staticmethod def from_pretrained(path: str): path = Path(path) if path.is_dir(): path = path / "config.json" with open(path, "r", encoding="utf-8") as f: data = json.load(f) match data["model_type"]: case "naive": cls = NaiveModelArgs case "dual_ar": cls = DualARModelArgs case _: raise ValueError(f"Unknown model type: {data['model_type']}") return cls(**data) def save(self, path: str): with open(path, "w") as f: json.dump(self.__dict__, f, indent=4, sort_keys=True, ensure_ascii=False) @dataclass class NaiveModelArgs(BaseModelArgs): model_type: str = "naive" @dataclass class DualARModelArgs(BaseModelArgs): model_type: str = "dual_ar" n_fast_layer: int = 4 class KVCache(nn.Module): def __init__( self, max_batch_size, max_seq_len, n_heads, head_dim, dtype=torch.bfloat16 ): super().__init__() cache_shape = (max_batch_size, n_heads, max_seq_len, head_dim) self.register_buffer("k_cache", torch.zeros(cache_shape, dtype=dtype)) self.register_buffer("v_cache", torch.zeros(cache_shape, dtype=dtype)) def update(self, input_pos, k_val, v_val): # input_pos: [S], k_val: [B, H, S, D] assert input_pos.shape[0] == k_val.shape[2] k_out = self.k_cache v_out = self.v_cache k_out[:, :, input_pos] = k_val v_out[:, :, input_pos] = v_val return k_out, v_out @dataclass class TransformerForwardResult: token_logits: Tensor codebook_logits: Tensor @dataclass class BaseTransformerForwardResult: logits: Tensor hidden_states: Tensor class BaseTransformer(nn.Module): def __init__( self, config: BaseModelArgs, tokenizer: AutoTokenizer, init_weights: bool = True ) -> None: super().__init__() self.config = config self.tokenizer = tokenizer self.semantic_token_id = tokenizer.convert_tokens_to_ids(SEMANTIC_TOKEN) # Slow transformer self.embeddings = nn.Embedding( config.vocab_size, config.dim, ) self.codebook_embeddings = nn.Embedding( config.codebook_size * config.num_codebooks, config.dim, ) self.layers = nn.ModuleList( TransformerBlock(config, use_sdpa=True) for _ in range(config.n_layer) ) self.norm = RMSNorm(config.dim, eps=config.norm_eps) if self.config.tie_word_embeddings is False: self.output = nn.Linear( config.dim, config.vocab_size, bias=False, ) self.register_buffer( "freqs_cis", precompute_freqs_cis( config.max_seq_len, config.dim // config.n_head, config.rope_base, ), persistent=False, ) self.register_buffer( "causal_mask", torch.tril( torch.ones( config.max_seq_len, config.max_seq_len, dtype=torch.bool, ) ), persistent=False, ) # For kv cache self.max_batch_size = -1 self.max_seq_len = -1 if init_weights: self.apply(self._init_weights) def setup_caches( self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16 ): if self.max_seq_len >= max_seq_len and self.max_batch_size >= max_batch_size: return head_dim = self.config.dim // self.config.n_head max_seq_len = find_multiple(max_seq_len, 8) self.max_seq_len = max_seq_len self.max_batch_size = max_batch_size for b in self.layers: b.attention.kv_cache = KVCache( max_batch_size, max_seq_len, self.config.n_local_heads, head_dim, dtype=dtype, ) def embed(self, x: Tensor) -> Tensor: vocab_embeds = [self.embeddings(x[:, 0])] for i in range(self.config.num_codebooks): emb = self.codebook_embeddings(x[:, i + 1] + i * self.config.codebook_size) emb[x[:, 0] != self.semantic_token_id] = 0 vocab_embeds.append(emb) x = torch.stack(vocab_embeds, dim=3) x = x.sum(dim=3) return x def forward( self, inp: Tensor, key_padding_mask: Optional[Tensor] = None, ) -> BaseTransformerForwardResult: seq_len = inp.size(2) # Here we want to merge the embeddings of the codebooks x = self.embed(inp) freqs_cis = self.freqs_cis[:seq_len] # Not that the causal mask here follows the definition of scaled_dot_product_attention # That is, FALSE means masked out # To maintain consistency, key_padding_mask use TRUE to mask out mask = None if key_padding_mask is not None: mask = self.causal_mask[None, None, :seq_len, :seq_len] # (B, N, Q, K) mask = mask & key_padding_mask[:, None, None, :].logical_not() for layer in self.layers: if self.config.use_gradient_checkpointing and self.training: x = checkpoint(layer, x, freqs_cis, mask, use_reentrant=True) else: x = layer(x, freqs_cis, mask) # We got slow_out here slow_out = self.norm(x) if self.config.tie_word_embeddings: token_logits = F.linear(slow_out, self.embeddings.weight) else: token_logits = self.output(slow_out) return BaseTransformerForwardResult( logits=token_logits, hidden_states=x, ) def forward_generate( self, x: Tensor, input_pos: Optional[Tensor] = None, return_all: bool = False, ) -> BaseTransformerForwardResult: # This is used for generation, optimized for torch compile assert ( self.max_seq_len != -1 and self.max_batch_size != -1 ), "Please call setup_caches before forward_generate" x = self.embed(x) mask = self.causal_mask[ None, None, input_pos, : self.max_seq_len ] # (B, N, Q, K) freqs_cis = self.freqs_cis[input_pos] for layer in self.layers: x = layer(x, freqs_cis, mask, input_pos=input_pos) # If prefill, we only calculate the logits of last token if x.size(1) > 1 and not return_all: x = x[:, -1:] # We got slow_out here slow_out = self.norm(x) if self.config.tie_word_embeddings: token_logits = F.linear(slow_out, self.embeddings.weight) else: token_logits = self.output(slow_out) return BaseTransformerForwardResult( logits=token_logits, hidden_states=x, ) def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @staticmethod def from_pretrained( path: str, load_weights: bool = False, max_length: int | None = None, lora_config: LoraConfig | None = None, rope_base: int | None = None, ) -> "BaseTransformer": config = BaseModelArgs.from_pretrained(str(path)) if max_length is not None: config.max_seq_len = max_length log.info(f"Override max_seq_len to {max_length}") if rope_base is not None: config.rope_base = rope_base log.info(f"Override rope_base to {rope_base}") match config.model_type: case "naive": model_cls = NaiveTransformer case "dual_ar": model_cls = DualARTransformer case _: raise ValueError(f"Unknown model type: {config.model_type}") tokenizer = AutoTokenizer.from_pretrained(str(path)) log.info(f"Loading model from {path}, config: {config}") model = model_cls(config, tokenizer=tokenizer) if lora_config is not None: setup_lora(model, lora_config) log.info(f"LoRA setup: {lora_config}") if load_weights is False: log.info("Randomly initialized model") else: if "int8" in str(Path(path)): logger.info("Using int8 weight-only quantization!") from tools.llama.quantize import WeightOnlyInt8QuantHandler simple_quantizer = WeightOnlyInt8QuantHandler(model) model = simple_quantizer.convert_for_runtime() if "int4" in str(Path(path)): logger.info("Using int4 quantization!") path_comps = path.name.split("-") assert path_comps[-2].startswith("g") groupsize = int(path_comps[-2][1:]) from tools.llama.quantize import WeightOnlyInt4QuantHandler simple_quantizer = WeightOnlyInt4QuantHandler(model, groupsize) model = simple_quantizer.convert_for_runtime() weights = torch.load( Path(path) / "model.pth", map_location="cpu", mmap=True ) if "state_dict" in weights: logger.warning( "Using a TextToSemantic LightningModule checkpoint, " "please make sure it is a full model, not a LoRA model." ) weights = weights["state_dict"] if next(iter(weights.keys())).startswith("model."): logger.info( f"Remove prefix 'model.' created by TextToSemantic LightningModule from keys" ) new_weights = OrderedDict() for k, v in weights.items(): new_weights[k.replace("model.", "")] = v weights = new_weights # Verify the name and shape of parameters since strict=False in load_state_dict. for k, v in model.named_parameters(): if k not in weights: logger.warning(f"No weight for {k}") elif v.shape != weights[k].shape: logger.warning( f"Shape mismatch for {k}: {v.shape} vs {weights[k].shape}" ) err = model.load_state_dict(weights, strict=False, assign=True) log.info(f"Loaded weights with error: {err}") return model def save_pretrained(self, path: str, drop_lora: bool = False): path = Path(path) path.mkdir(parents=True, exist_ok=True) self.config.save(path / "config.json") state_dict = self.state_dict() if drop_lora: for key in list(state_dict.keys()): if "lora" not in key: continue state_dict.pop(key) log.info(f"Drop LoRA parameter: {key}") torch.save(state_dict, path / "model.pth") self.tokenizer.save_pretrained(path) class NaiveTransformer(BaseTransformer): def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None: super().__init__(config, init_weights=False, tokenizer=tokenizer) self.codebook_norm = RMSNorm(config.dim, eps=config.norm_eps) self.codebook_output = nn.Linear( config.dim, config.codebook_size * config.num_codebooks, bias=False, ) self.apply(self._init_weights) def decode(self, result: BaseTransformerForwardResult) -> TransformerForwardResult: token_logits = result.logits x = result.hidden_states # Codebook codebook_logits = self.codebook_output(self.codebook_norm(x)) codebook_logits = rearrange( codebook_logits, "b n (c d) -> b n c d", c=self.config.num_codebooks ) return TransformerForwardResult( token_logits=token_logits, codebook_logits=codebook_logits, ) def forward( self, inp: Tensor, key_padding_mask: Optional[Tensor] = None, ) -> TransformerForwardResult: result = super().forward( inp=inp, key_padding_mask=key_padding_mask, ) return self.decode(result) def forward_generate( self, x: Tensor, input_pos: Optional[Tensor] = None ) -> TransformerForwardResult: result = super().forward_generate(x, input_pos) return self.decode(result) class DualARTransformer(BaseTransformer): def __init__(self, config: NaiveModelArgs, tokenizer: AutoTokenizer) -> None: super().__init__(config, init_weights=False, tokenizer=tokenizer) # Fast transformer self.fast_embeddings = nn.Embedding(config.codebook_size, config.dim) # The equivalent bs is so large that sdpa doesn't work self.fast_layers = nn.ModuleList( TransformerBlock(config, use_sdpa=False) for _ in range(config.n_fast_layer) ) self.fast_norm = RMSNorm(config.dim, eps=config.norm_eps) self.fast_output = nn.Linear( config.dim, config.codebook_size, bias=False, ) self.apply(self._init_weights) def setup_caches( self, max_batch_size: int, max_seq_len: int, dtype: torch.dtype = torch.bfloat16 ): super().setup_caches(max_batch_size, max_seq_len, dtype) head_dim = self.config.dim // self.config.n_head # Fast transformer # The max seq len here is the number of codebooks for b in self.fast_layers: b.attention.kv_cache = KVCache( max_batch_size, self.config.num_codebooks, self.config.n_local_heads, head_dim, dtype=dtype, ) def forward( self, inp: Tensor, key_padding_mask: Optional[Tensor] = None, ) -> TransformerForwardResult: parent_result = super().forward(inp, key_padding_mask) token_logits = parent_result.logits x = parent_result.hidden_states # Fast transformer fast_seq_len = self.config.num_codebooks fast_mask = self.causal_mask[ None, None, :fast_seq_len, :fast_seq_len ] # (B, N, Q, K) fast_freqs_cis = self.freqs_cis[:fast_seq_len] # Drop the last token and rotate left codebooks = inp[:, 1:-1, 1:] codebooks = F.pad(codebooks, (0, 1), value=0) codebook_embeddings = self.fast_embeddings(codebooks) x = torch.cat([x[:, None], codebook_embeddings], dim=1) b, s = x.size(0), x.size(2) x = rearrange(x, "b n s d -> (b s) n d") # flatten the batch and seq_len # Remove padded part codebooks = rearrange(codebooks, "b n s -> (b s) n") codebook_mask = (codebooks == 0).all(dim=-1) if torch.all(codebook_mask): # If all codebooks are padded, we keep first 8 to make sure the model runs codebook_mask[:8] = False x_bs, x_len = x.size(0), x.size(1) x = x[~codebook_mask] for layer in self.fast_layers: if self.config.use_gradient_checkpointing and self.training: x = checkpoint(layer, x, fast_freqs_cis, fast_mask, use_reentrant=True) else: x = layer(x, fast_freqs_cis, fast_mask) # unflatten the batch and num_codebooks fast_out = self.fast_norm(x) codebook_logits = self.fast_output(fast_out) # Re-pad the codebook_logits buffer = torch.zeros( x_bs, x_len, codebook_logits.size(-1), device=codebook_logits.device, dtype=codebook_logits.dtype, ) buffer[~codebook_mask] = codebook_logits codebook_logits = buffer assert codebook_logits.shape[1] == self.config.num_codebooks codebook_logits = rearrange( codebook_logits, "(b s) n d -> b s n d", b=b, s=s, n=self.config.num_codebooks, ) return TransformerForwardResult( token_logits=token_logits, codebook_logits=codebook_logits, ) def forward_generate_fast( self, x: Tensor, input_pos: Optional[Tensor] = None ) -> Tensor: # Fast transformer x = x.view(1, 1, -1) fast_mask = self.causal_mask[ None, None, input_pos, : self.config.num_codebooks ] # (B, N, Q, K) fast_freqs_cis = self.freqs_cis[input_pos] for layer in self.fast_layers: x = layer(x, fast_freqs_cis, fast_mask, input_pos=input_pos) # unflatten the batch and num_codebooks fast_out = self.fast_norm(x) # only take the last token codebook_logits = self.fast_output(fast_out) return codebook_logits class TransformerBlock(nn.Module): def __init__(self, config: BaseModelArgs, use_sdpa: bool = True) -> None: super().__init__() self.attention = Attention(config, use_sdpa=use_sdpa) self.feed_forward = FeedForward(config) self.ffn_norm = RMSNorm(config.dim, config.norm_eps) self.attention_norm = RMSNorm(config.dim, config.norm_eps) def forward( self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Tensor = None ) -> Tensor: h = x + self.attention(self.attention_norm(x), freqs_cis, mask, input_pos) out = h + self.feed_forward(self.ffn_norm(h)) return out class Attention(nn.Module): def __init__(self, config: BaseModelArgs, use_sdpa: bool = True): super().__init__() assert config.dim % config.n_head == 0 total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim # key, query, value projections for all heads, but in a batch self.wqkv = nn.Linear( config.dim, total_head_dim, bias=config.attention_qkv_bias ) self.wo = nn.Linear(config.dim, config.dim, bias=False) self.kv_cache = None self.dropout = config.dropout self.n_head = config.n_head self.head_dim = config.head_dim self.n_local_heads = config.n_local_heads self.dim = config.dim self.use_sdpa = use_sdpa self._register_load_state_dict_pre_hook(self.load_hook) def load_hook(self, state_dict, prefix, *args): if prefix + "wq.weight" in state_dict: wq = state_dict.pop(prefix + "wq.weight") wk = state_dict.pop(prefix + "wk.weight") wv = state_dict.pop(prefix + "wv.weight") state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) def forward( self, x: Tensor, freqs_cis: Tensor, mask: Tensor, input_pos: Optional[Tensor] = None, ) -> Tensor: bsz, seqlen, _ = x.shape kv_size = self.n_local_heads * self.head_dim q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) q = q.view(bsz, seqlen, self.n_head, self.head_dim) k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) q = apply_rotary_emb(q, freqs_cis) k = apply_rotary_emb(k, freqs_cis) q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) if self.kv_cache is not None: k, v = self.kv_cache.update(input_pos, k, v) k = k.repeat_interleave(self.n_head // self.n_local_heads, dim=1) v = v.repeat_interleave(self.n_head // self.n_local_heads, dim=1) if self.use_sdpa: if mask is None: with sdpa_kernel(SDPBackend.FLASH_ATTENTION): y = F.scaled_dot_product_attention( q, k, v, dropout_p=self.dropout if self.training else 0.0, is_causal=True, # No third party attn_mask here to use flash_attention ) else: y = F.scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=self.dropout if self.training else 0.0, ) else: y = self.eq_scaled_dot_product_attention( q, k, v, attn_mask=mask, dropout_p=self.dropout if self.training else 0.0, ) y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) return self.wo(y) def eq_scaled_dot_product_attention( self, query, key, value, attn_mask=None, dropout_p=0.0, ) -> torch.Tensor: # This is a standard scaled dot product attention # It's low efficient, but it doesn't raise cuda error L, S = query.size(-2), key.size(-2) scale_factor = 1 / math.sqrt(query.size(-1)) attn_bias = torch.zeros(1, 1, L, S, dtype=query.dtype, device=query.device) if attn_mask is not None: if attn_mask.dtype == torch.bool: attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) else: attn_bias += attn_mask attn_weight = query @ key.transpose(-2, -1) * scale_factor attn_weight += attn_bias attn_weight = torch.softmax(attn_weight, dim=-1) attn_weight = torch.dropout(attn_weight, dropout_p, train=True) return attn_weight @ value class FeedForward(nn.Module): def __init__(self, config: BaseModelArgs) -> None: super().__init__() self.w1 = nn.Linear(config.dim, config.intermediate_size, bias=False) self.w3 = nn.Linear(config.dim, config.intermediate_size, bias=False) self.w2 = nn.Linear(config.intermediate_size, config.dim, bias=False) def forward(self, x: Tensor) -> Tensor: return self.w2(F.silu(self.w1(x)) * self.w3(x)) class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) def forward(self, x: Tensor) -> Tensor: output = self._norm(x.float()).type_as(x) return output * self.weight def precompute_freqs_cis(seq_len: int, n_elem: int, base: int = 10000) -> Tensor: freqs = 1.0 / ( base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem) ) t = torch.arange(seq_len, device=freqs.device) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) return cache.to(dtype=torch.bfloat16) def apply_rotary_emb(x: Tensor, freqs_cis: Tensor) -> Tensor: xshaped = x.float().reshape(*x.shape[:-1], -1, 2) freqs_cis = freqs_cis.view(1, xshaped.size(1), 1, xshaped.size(3), 2) x_out2 = torch.stack( [ xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], ], -1, ) x_out2 = x_out2.flatten(3) return x_out2.type_as(x)