import requests import json import random import streamlit as st import numpy as np from transformers import AutoFeatureExtractor from transformers import AutoModelForImageClassification import plotly.graph_objects as go import plotly import re st.title("Recipes by Ingredients") st.markdown("Get food recipes based on user input. Users can input the type of food they want to search for and the maximum number of calories they want to consume, and depending on the criteria a recipe will be recommended to the user.") url = "https://alcksyjrmd.execute-api.us-east-2.amazonaws.com/default/nutrients_response" # Get user input ingredients = st.text_input("Enter ingredients (Separated By Commas)", placeholder="Enter Atleast One Ingredient", value="") # Set default values for optional parameters max_calories = 0 diet = "All" cuisine = "All" # Add options for target calories per day, diet, and cuisine max_calories = st.number_input("Enter your max calories for recipe", min_value=0, value=0, step=100) diet_options = ["All", "Gluten-Free", "Vegan", "Vegetarian", "Dairy-Free"] diet = st.selectbox("Select a diet", diet_options) cuisine_options = ["All", "African", "Asian", "Caribbean", "Central American", "Europe", "Middle Eastern", "North American", "Oceanic", "South American"] cuisine = st.selectbox("Select a cuisine", cuisine_options) if ingredients == "": st.warning("Please enter at least one ingredient.") elif st.button("Get Recipe"): # Set the parameters for the API request params = {"i": ingredients} if max_calories != 0: params["k"] = max_calories if diet != "All": params["d"] = diet if cuisine != "All": params["c"] = cuisine # Make the API request response = requests.get(url, params=params) if response.status_code == 200 and response.content: try: response_json = json.loads(response.content) except json.JSONDecodeError: st.write("Error: Response is not in valid JSON format") response_json = None else: st.error("The query was too large, please fine-tune your search.") response_json = None # Display the results if response_json is None or len(response_json) == 0: st.markdown("### No Recipe Found:") st.write("**No Recipe Found, please try another option from the dropdown menus.**") else: st.markdown("### Recommended Recipe:") if len(response_json) > 1: random_recipe = random.choice(response_json) st.write("**Title:** ", random_recipe['Title']) if random_recipe['Image Link'].endswith(".jpg") or random_recipe['Image Link'].endswith(".jpeg") or random_recipe['Image Link'].endswith(".png"): st.image(random_recipe['Image Link'], width=300) else: st.write("**Image Link:** ", random_recipe['Image Link']) st.write("**Rating:** ", random_recipe['Rating']) if random_recipe['Description'] != "Description not found": st.write("**Description:** ", random_recipe['Description']) st.write("**Ingredients:**
", random_recipe['Ingredients'].replace('\n', '
'), unsafe_allow_html=True) st.write("**Recipe Facts:**
", random_recipe['Recipe Facts'].replace('\n', '
'), unsafe_allow_html=True) st.write("**Directions:**
", random_recipe['Directions'].replace('\n', '
'), unsafe_allow_html=True) # extract only numeric values and convert mg to g values = [ float(re.sub(r'[^\d.]+', '', random_recipe['Total Fat'])), float(re.sub(r'[^\d.]+', '', random_recipe['Saturated Fat'])), float(re.sub(r'[^\d.]+', '', random_recipe['Cholesterol'])) / 1000, float(re.sub(r'[^\d.]+', '', random_recipe['Sodium'])) / 1000, float(re.sub(r'[^\d.]+', '', random_recipe['Total Carbohydrate'])), float(re.sub(r'[^\d.]+', '', random_recipe['Dietary Fiber'])), float(re.sub(r'[^\d.]+', '', random_recipe['Total Sugars'])), float(re.sub(r'[^\d.]+', '', random_recipe['Protein'])), float(re.sub(r'[^\d.]+', '', random_recipe['Vitamin C'])) / 1000, float(re.sub(r'[^\d.]+', '', random_recipe['Calcium'])) / 1000, float(re.sub(r'[^\d.]+', '', random_recipe['Iron'])) / 1000, float(re.sub(r'[^\d.]+', '', random_recipe['Potassium'])) / 1000 ] # Create a list of daily values (DV) for each nutrient based on a 2000 calorie per day diet, all are in grams dv = [65, 20, 0.3, 2.3, 300, 28, 50, 50, 0.09, 1, 0.018, 4.7] # Calculate the percentage of DV for each nutrient dv_percent = [round(value * 100 / dv[i]) for i, value in enumerate(values)] nutrition_html = """
Number of Servings: {servings}
Calories {calories}
Total Fat {total_fat} {fat_percent}% DV
Saturated Fat {saturated_fat} {sat_fat_percent}% DV
Cholesterol {cholesterol} {chol_percent}% DV
Sodium {sodium} {sodium_percent}% DV
Total Carbohydrate {total_carbohydrate} {carb_percent}% DV
Dietary Fiber {dietary_fiber} {diet_fibe_percent}% DV
Total Sugars {total_sugars} {tot_sugars_percent}% DV
Protein {protein} {protein_percent}% DV
Vitamin C {vitc} {vitc_percent}% DV
Calcium {calc} {calc_percent}% DV
Iron {iron} {iron_percent}% DV
Potassium {pota} {pota_percent}% DV
""" # Use the nutrition HTML and format it with the values formatted_html = nutrition_html.format( calories=random_recipe['Calories'], total_fat=random_recipe['Total Fat'], saturated_fat=random_recipe['Saturated Fat'], cholesterol=random_recipe['Cholesterol'], sodium=random_recipe['Sodium'], total_carbohydrate=random_recipe['Total Carbohydrate'], dietary_fiber=random_recipe['Dietary Fiber'], total_sugars=random_recipe['Total Sugars'], servings=random_recipe['Number of Servings'], vitc=random_recipe['Vitamin C'], calc=random_recipe['Calcium'], iron=random_recipe['Iron'], pota=random_recipe['Potassium'], protein=random_recipe['Protein'], fat_percent=dv_percent[0], sat_fat_percent=dv_percent[1], chol_percent=dv_percent[2], sodium_percent=dv_percent[3], carb_percent=dv_percent[4], diet_fibe_percent=dv_percent[5], tot_sugars_percent=dv_percent[6], protein_percent=dv_percent[7], vitc_percent=dv_percent[8], calc_percent=dv_percent[9], iron_percent=dv_percent[10], pota_percent=dv_percent[11] ) # Define a function to apply the CSS styles to the table cells def format_table(val): return f"background-color: #133350; color: #fff; border: 1px solid #ddd; border-radius: .25rem; padding: .625rem .625rem 0; font-family: Helvetica; font-size: 1rem;" with st.container(): # Add the nutrition table to the Streamlit app st.write("

Nutrition Facts (per serving)

", unsafe_allow_html=True) st.write(f"
{formatted_html}
", unsafe_allow_html=True) st.write("

*The % Daily Value (DV) tells you how much a nutrient in a food serving contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.

", unsafe_allow_html=True) # create pie chart labels = ['Total Fat', 'Saturated Fat', 'Cholesterol', 'Sodium', 'Total Carbohydrate', 'Dietary Fiber', 'Total Sugars', 'Protein', 'Vitamin C', 'Calcium', 'Iron', 'Potassium'] fig = go.Figure(data=[go.Pie(labels=labels, values=values)]) st.markdown("### Macronutrients Pie Chart ;) (In Grams)") st.plotly_chart(fig) st.write("**Tags:** ", random_recipe['Tags']) st.write("**Recipe URL:** ", random_recipe['Recipe URLs']) st.write("*To download this recipe as a PDF, open the hamburger menu on the top right and click on Print.*") st.markdown("### JSON Response:") st.write(response_json) else: st.markdown("### Recommended Recipe:") st.write("**Title:** ", response_json[0]['Title']) if response_json[0]['Image Link'].endswith(".jpg") or response_json[0]['Image Link'].endswith(".jpeg") or response_json[0]['Image Link'].endswith(".png"): st.image(response_json[0]['Image Link'], width=300) else: st.write("**Image Link:** ", response_json[0]['Image Link']) st.write("**Rating:** ", response_json[0]['Rating']) if response_json[0]['Description'] != "Description not found": st.write("**Description:** ", response_json[0]['Description']) st.write("**Ingredients:**
", response_json[0]['Ingredients'].replace('\n', '
'), unsafe_allow_html=True) st.write("**Recipe Facts:**
", response_json[0]['Recipe Facts'].replace('\n', '
'), unsafe_allow_html=True) st.write("**Directions:**
", response_json[0]['Directions'].replace('\n', '
'), unsafe_allow_html=True) # extract only numeric values and convert mg to g values = [ float(re.sub(r'[^\d.]+', '', response_json[0]['Total Fat'])), float(re.sub(r'[^\d.]+', '', response_json[0]['Saturated Fat'])), float(re.sub(r'[^\d.]+', '', response_json[0]['Cholesterol'])) / 1000, float(re.sub(r'[^\d.]+', '', response_json[0]['Sodium'])) / 1000, float(re.sub(r'[^\d.]+', '', response_json[0]['Total Carbohydrate'])), float(re.sub(r'[^\d.]+', '', response_json[0]['Dietary Fiber'])), float(re.sub(r'[^\d.]+', '', response_json[0]['Total Sugars'])), float(re.sub(r'[^\d.]+', '', response_json[0]['Protein'])), float(re.sub(r'[^\d.]+', '', response_json[0]['Vitamin C'])) / 1000, float(re.sub(r'[^\d.]+', '', response_json[0]['Calcium'])) / 1000, float(re.sub(r'[^\d.]+', '', response_json[0]['Iron'])) / 1000, float(re.sub(r'[^\d.]+', '', response_json[0]['Potassium'])) / 1000 ] # Create a list of daily values (DV) for each nutrient based on a 2000 calorie per day diet, all are in grams dv = [65, 20, 0.3, 2.3, 300, 28, 50, 50, 0.09, 1, 0.018, 4.7] # Calculate the percentage of DV for each nutrient dv_percent = [round(value * 100 / dv[i]) for i, value in enumerate(values)] nutrition_html = """
Number of Servings: {servings}
Calories {calories}
Total Fat {total_fat} {fat_percent}% DV
Saturated Fat {saturated_fat} {sat_fat_percent}% DV
Cholesterol {cholesterol} {chol_percent}% DV
Sodium {sodium} {sodium_percent}% DV
Total Carbohydrate {total_carbohydrate} {carb_percent}% DV
Dietary Fiber {dietary_fiber} {diet_fibe_percent}% DV
Total Sugars {total_sugars} {tot_sugars_percent}% DV
Protein {protein} {protein_percent}% DV
Vitamin C {vitc} {vitc_percent}% DV
Calcium {calc} {calc_percent}% DV
Iron {iron} {iron_percent}% DV
Potassium {pota} {pota_percent}% DV
""" # Use the nutrition HTML and format it with the values formatted_html = nutrition_html.format( calories=response_json[0]['Calories'], total_fat=response_json[0]['Total Fat'], saturated_fat=response_json[0]['Saturated Fat'], cholesterol=response_json[0]['Cholesterol'], sodium=response_json[0]['Sodium'], total_carbohydrate=response_json[0]['Total Carbohydrate'], dietary_fiber=response_json[0]['Dietary Fiber'], total_sugars=response_json[0]['Total Sugars'], servings=response_json[0]['Number of Servings'], vitc=response_json[0]['Vitamin C'], calc=response_json[0]['Calcium'], iron=response_json[0]['Iron'], pota=response_json[0]['Potassium'], protein=response_json[0]['Protein'], fat_percent=dv_percent[0], sat_fat_percent=dv_percent[1], chol_percent=dv_percent[2], sodium_percent=dv_percent[3], carb_percent=dv_percent[4], diet_fibe_percent=dv_percent[5], tot_sugars_percent=dv_percent[6], protein_percent=dv_percent[7], vitc_percent=dv_percent[8], calc_percent=dv_percent[9], iron_percent=dv_percent[10], pota_percent=dv_percent[11] ) # Define a function to apply the CSS styles to the table cells def format_table(val): return f"background-color: #133350; color: #fff; border: 1px solid #ddd; border-radius: .25rem; padding: .625rem .625rem 0; font-family: Helvetica; font-size: 1rem;" with st.container(): # Add the nutrition table to the Streamlit app st.write("

Nutrition Facts (per serving)

", unsafe_allow_html=True) st.write(f"
{formatted_html}
", unsafe_allow_html=True) st.write("

*The % Daily Value (DV) tells you how much a nutrient in a food serving contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.

", unsafe_allow_html=True) # create pie chart labels = ['Total Fat', 'Saturated Fat', 'Cholesterol', 'Sodium', 'Total Carbohydrate', 'Dietary Fiber', 'Total Sugars', 'Protein', 'Vitamin C', 'Calcium', 'Iron', 'Potassium'] fig = go.Figure(data=[go.Pie(labels=labels, values=values)]) st.markdown("### Macronutrients Pie Chart ;) (In Grams)") st.plotly_chart(fig) st.write("**Tags:** ", response_json[0]['Tags']) st.write("**Recipe URL:** ", response_json[0]['Recipe URLs']) st.write("*To download this recipe as a PDF, open the hamburger menu on the top right and click on Print.*") st.markdown("### JSON Response:") st.write(response_json)