File size: 1,717 Bytes
dbcea98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9836b3a
 
 
 
 
 
 
 
 
 
 
f1eb099
 
 
 
 
 
 
 
 
29da96e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
title = "DIFF-SVC"
description = """
<p>
<body style="background-color: #18181a; color: white;"></body>
<center>
    <h1>DIFF-SVC Inference Cloud</h1>
    This is a Cloud Inference where you can render your models with your wav files
    <p>Enter a link:</p>
    <input type="text" id="link-input"/>
    <p>Upload a WAV file:</p> <input type="file" id="wav-input" accept=".wav"/>
    <button id="render-button">Render</button>
    <p>Diff-SVC prediction:</p>
    <p id="prediction-output"></p>
</center>
</p>
"""
from utils.hparams import hparams
from preprocessing.data_gen_utils import get_pitch_parselmouth,get_pitch_crepe
import numpy as np
import matplotlib.pyplot as plt
import IPython.display as ipd
import utils
import librosa
import torchcrepe
from infer import *
import logging
from infer_tools.infer_tool import *
############
logging.getLogger('numba').setLevel(logging.WARNING)

# 工程文件夹名,训练时用的那个
project_name = "Unnamed"
model_path = f'./checkpoints/Unnamed/model_ckpt_steps_192000.ckpt'
config_path=f'./checkpoints/Unnamed/config.yaml'
hubert_gpu=False
svc_model = Svc(project_name,config_path,hubert_gpu, model_path)
print('model loaded')

wav_fn='raw/cilliafinal.wav'#支持多数音频格式,无需手动转为wav
demoaudio, sr = librosa.load(wav_fn)
key = -8 # 音高调整,支持正负(半音)
# 加速倍数
pndm_speedup = 20
wav_gen='queeeeee.wav'#直接改后缀可以保存不同格式音频,如flac可无损压缩
f0_tst, f0_pred, audio = run_clip(svc_model,file_path=wav_fn, key=key, acc=pndm_speedup, use_crepe=True, use_pe=True, th
                                        use_gt_mel=False, add_noise_step=500,project_name=project_name,out_path=wav_gen)