import streamlit as st import pandas as pd import numpy as np import matplotlib.pyplot as plt import json import os import tempfile import shutil import requests from pathlib import Path temp_dir = tempfile.TemporaryDirectory() global ckpt_temp_file global audio_temp_file global config_temp_file ################################################### from utils.hparams import hparams from preprocessing.data_gen_utils import get_pitch_parselmouth,get_pitch_crepe import numpy as np import matplotlib.pyplot as plt import IPython.display as ipd import utils import librosa import torchcrepe from infer import * import logging from infer_tools.infer_tool import * import io clip_completed = False def render_audio(ckpt_temp_file, config_temp_file, audio_temp_file, title): logging.getLogger('numba').setLevel(logging.WARNING) title = int(title) project_name = "Unnamed" model_path = ckpt_temp_file config_path= config_temp_file hubert_gpu=True svc_model = Svc(project_name,config_path,hubert_gpu, model_path) print('model loaded') wav_fn = audio_temp_file demoaudio, sr = librosa.load(wav_fn) key = title # 音高调整,支持正负(半音) # 加速倍数 pndm_speedup = 20 wav_gen='queeeeee.wav' # Show the spinner and run the run_clip function inside the 'with' block with st.spinner("Rendering Audio..."): f0_tst, f0_pred, audio = run_clip(svc_model,file_path=wav_fn, key=key, acc=pndm_speedup, use_crepe=True, use_pe=True, thre=0.05, use_gt_mel=False, add_noise_step=500,project_name=project_name,out_path=wav_gen) clip_completed = True if clip_completed: st.audio(wav_gen) ####################################################### st.set_page_config( page_title="DiffSVC Render", page_icon="🧊", initial_sidebar_state="expanded", ) ############ st.title('DIFF-SVC Render') ###CKPT LOADER ckpt = st.file_uploader("Choose your CKPT", type= 'ckpt') # Check if user uploaded a CKPT file if ckpt is not None: #TEMP FUNCTION with tempfile.NamedTemporaryFile(mode="wb", suffix='.ckpt', delete=False) as temp: # Get the file contents as bytes bytes_data = ckpt.getvalue() # Write the bytes to the temporary file temp.write(bytes_data) config_temp_file = temp.name # Print the temporary file name print(temp.name) st.success("File saved to: {}".format(ckpt_temp_file)) # Display the file path if "ckpt_temp_file" in locals(): st.success("File saved to: {}".format(ckpt_temp_file)) # File uploader config = st.file_uploader("Choose your config", type= 'yaml') # Check if user uploaded a config file if config is not None: #TEMP FUNCTION with tempfile.NamedTemporaryFile(mode="wb", suffix='.yaml', delete=False) as temp: # Get the file contents as bytes bytes_data = config.getvalue() # Write the bytes to the temporary file temp.write(bytes_data) config_temp_file = temp.name # Print the temporary file name print(temp.name) # Display the file path if "config_temp_file" in locals(): st.success("File saved to: {}".format(config_temp_file)) audio = st.file_uploader("Choose your audio", type=["wav", "mp3"]) # Check if user uploaded an audio file if audio is not None: #TEMP FUNCTION with tempfile.NamedTemporaryFile(mode="wb", suffix='.wav', delete=False) as temp: # Get the file contents as bytes bytes_data = audio.getvalue() # Write the bytes to the temporary file temp.write(bytes_data) audio_temp_file = temp.name # Print the temporary file name print(temp.name) # Display the file path if "audio_temp_file" in locals(): st.success("File saved to: {}".format(audio_temp_file)) # Add a text input for the title with a default value of 0 title = st.text_input("Key", value="0") # Add a button to start the rendering process if st.button("Render audio"): render_audio(ckpt_temp_file, config_temp_file, audio_temp_file, title)