Spaces:
Runtime error
Runtime error
add segment model
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from torchvision.transforms import Compose
|
5 |
import cv2
|
6 |
-
from dpt.models import DPTDepthModel
|
7 |
from dpt.transforms import Resize, NormalizeImage, PrepareForNet
|
8 |
import os
|
9 |
|
@@ -11,16 +11,31 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
11 |
print("device: %s" % device)
|
12 |
default_models = {
|
13 |
"dpt_hybrid": "weights/dpt_hybrid-midas-501f0c75.pt",
|
|
|
14 |
}
|
15 |
torch.backends.cudnn.enabled = True
|
16 |
torch.backends.cudnn.benchmark = True
|
17 |
-
|
18 |
-
|
19 |
path=default_models["dpt_hybrid"],
|
20 |
backbone="vitb_rn50_384",
|
21 |
non_negative=True,
|
22 |
enable_attention_hooks=False,
|
23 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
25 |
transform = Compose(
|
26 |
[
|
@@ -38,8 +53,6 @@ transform = Compose(
|
|
38 |
]
|
39 |
)
|
40 |
|
41 |
-
model.eval()
|
42 |
-
model.to(device)
|
43 |
|
44 |
def write_depth(depth, bits=1, absolute_depth=False):
|
45 |
"""Write depth map to pfm and png file.
|
@@ -67,7 +80,8 @@ def write_depth(depth, bits=1, absolute_depth=False):
|
|
67 |
return out.astype("uint8")
|
68 |
elif bits == 2:
|
69 |
return out.astype("uint16")
|
70 |
-
|
|
|
71 |
|
72 |
def DPT(image):
|
73 |
img_input = transform({"image": image})["image"]
|
@@ -75,7 +89,7 @@ def DPT(image):
|
|
75 |
with torch.no_grad():
|
76 |
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
|
77 |
|
78 |
-
prediction =
|
79 |
prediction = (
|
80 |
torch.nn.functional.interpolate(
|
81 |
prediction.unsqueeze(1),
|
@@ -90,6 +104,26 @@ def DPT(image):
|
|
90 |
|
91 |
depth_img = write_depth(prediction, bits=2)
|
92 |
return depth_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
title = " AISeed AI Application Demo "
|
95 |
description = "# A Demo of Deep Learning for Depth Estimation"
|
@@ -99,16 +133,19 @@ with gr.Blocks() as demo:
|
|
99 |
demo.title = title
|
100 |
gr.Markdown(description)
|
101 |
with gr.Row():
|
102 |
-
im = gr.Image(label="Input Image")
|
103 |
-
im_2 = gr.Image(label="Depth Image")
|
104 |
with gr.Column():
|
105 |
-
|
|
|
|
|
|
|
|
|
106 |
btn1 = gr.Button(value="Depth Estimator")
|
107 |
btn1.click(DPT, inputs=[im], outputs=[im_2])
|
|
|
|
|
108 |
gr.Examples(examples=example_list,
|
109 |
inputs=[im],
|
110 |
-
outputs=[im_2]
|
111 |
-
fn=DPT)
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
demo.launch()
|
|
|
3 |
import torch
|
4 |
from torchvision.transforms import Compose
|
5 |
import cv2
|
6 |
+
from dpt.models import DPTDepthModel, DPTSegmentationModel
|
7 |
from dpt.transforms import Resize, NormalizeImage, PrepareForNet
|
8 |
import os
|
9 |
|
|
|
11 |
print("device: %s" % device)
|
12 |
default_models = {
|
13 |
"dpt_hybrid": "weights/dpt_hybrid-midas-501f0c75.pt",
|
14 |
+
"segment_hybrid": "weights/dpt_hybrid-ade20k-53898607.pt"
|
15 |
}
|
16 |
torch.backends.cudnn.enabled = True
|
17 |
torch.backends.cudnn.benchmark = True
|
18 |
+
|
19 |
+
depth_model = DPTDepthModel(
|
20 |
path=default_models["dpt_hybrid"],
|
21 |
backbone="vitb_rn50_384",
|
22 |
non_negative=True,
|
23 |
enable_attention_hooks=False,
|
24 |
)
|
25 |
+
|
26 |
+
depth_model.eval()
|
27 |
+
depth_model.to(device)
|
28 |
+
|
29 |
+
seg_model = DPTSegmentationModel(
|
30 |
+
150,
|
31 |
+
path=default_models["segment_hybrid"],
|
32 |
+
backbone="vitb_rn50_384",
|
33 |
+
)
|
34 |
+
seg_model.eval()
|
35 |
+
seg_model.to(device)
|
36 |
+
|
37 |
+
# Transform
|
38 |
+
net_w = net_h = 384
|
39 |
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
40 |
transform = Compose(
|
41 |
[
|
|
|
53 |
]
|
54 |
)
|
55 |
|
|
|
|
|
56 |
|
57 |
def write_depth(depth, bits=1, absolute_depth=False):
|
58 |
"""Write depth map to pfm and png file.
|
|
|
80 |
return out.astype("uint8")
|
81 |
elif bits == 2:
|
82 |
return out.astype("uint16")
|
83 |
+
|
84 |
+
|
85 |
|
86 |
def DPT(image):
|
87 |
img_input = transform({"image": image})["image"]
|
|
|
89 |
with torch.no_grad():
|
90 |
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
|
91 |
|
92 |
+
prediction = depth_model.forward(sample)
|
93 |
prediction = (
|
94 |
torch.nn.functional.interpolate(
|
95 |
prediction.unsqueeze(1),
|
|
|
104 |
|
105 |
depth_img = write_depth(prediction, bits=2)
|
106 |
return depth_img
|
107 |
+
|
108 |
+
def Segment(image):
|
109 |
+
img_input = transform({"image": image})["image"]
|
110 |
+
|
111 |
+
# compute
|
112 |
+
with torch.no_grad():
|
113 |
+
sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
|
114 |
+
# if optimize == True and device == torch.device("cuda"):
|
115 |
+
# sample = sample.to(memory_format=torch.channels_last)
|
116 |
+
# sample = sample.half()
|
117 |
+
|
118 |
+
out = seg_model.forward(sample)
|
119 |
+
|
120 |
+
prediction = torch.nn.functional.interpolate(
|
121 |
+
out, size=image.shape[:2], mode="bicubic", align_corners=False
|
122 |
+
)
|
123 |
+
prediction = torch.argmax(prediction, dim=1) + 1
|
124 |
+
prediction = prediction.squeeze().cpu().numpy()
|
125 |
+
|
126 |
+
return prediction
|
127 |
|
128 |
title = " AISeed AI Application Demo "
|
129 |
description = "# A Demo of Deep Learning for Depth Estimation"
|
|
|
133 |
demo.title = title
|
134 |
gr.Markdown(description)
|
135 |
with gr.Row():
|
|
|
|
|
136 |
with gr.Column():
|
137 |
+
|
138 |
+
im_2 = gr.Image(label="Depth Image")
|
139 |
+
im_3 = gr.Image(label="Segment Image")
|
140 |
+
with gr.Column():
|
141 |
+
im = gr.Image(label="Input Image")
|
142 |
btn1 = gr.Button(value="Depth Estimator")
|
143 |
btn1.click(DPT, inputs=[im], outputs=[im_2])
|
144 |
+
btn2 = gr.Button(value="Segment")
|
145 |
+
btn2.click(Segment, inputs=[im], outputs=[im_3])
|
146 |
gr.Examples(examples=example_list,
|
147 |
inputs=[im],
|
148 |
+
outputs=[im_2])
|
|
|
149 |
|
150 |
if __name__ == "__main__":
|
151 |
demo.launch()
|