Spaces:
Runtime error
Runtime error
File size: 19,218 Bytes
0de5d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import streamlit as st
import numpy as np
import scipy.stats as stats
from fpdf import FPDF
import base64
import os
from plots import test_profile
import matplotlib.pyplot as plt
from PIL import Image
test_dict = {
"animal": {
"low_age_low_education": {
"mean": 21.0,
"std": 7.0
}, "low_age_high_education": {
"mean": 22.4,
"std": 6.8
}, "high_age_low_education": {
"mean": 22.1,
"std": 5.7
}, "high_age_high_education": {
"mean": 25.6,
"std": 5.6
}
}, "verb": {
"low_age_low_education": {
"mean": 17.6,
"std": 4.3
}, "low_age_high_education": {
"mean": 20.5,
"std": 5.4
}, "high_age_low_education": {
"mean": 16.7,
"std": 6.1
}, "high_age_high_education": {
"mean": 22.7,
"std": 5.1
}
}, "repetition": {
"low_age_low_education": {
"mean": 24.8,
"std": 4.8
}, "low_age_high_education": {
"mean": 25.9,
"std": 3.7
}, "high_age_low_education": {
"mean": 24.0,
"std": 4.9
}, "high_age_high_education": {
"mean": 25.8,
"std": 3.8
}
}, "months_backward": {
"low_age_low_education": {
"mean": 10.3,
"std": 4.5
}, "low_age_high_education": {
"mean": 9.8,
"std": 3.2
}, "high_age_low_education": {
"mean": 10.0,
"std": 3.2
}, "high_age_high_education": {
"mean": 9.9,
"std": 3.5
}
},
"logicogrammatic": {
"low_age_low_education": {
"mean": 27.2,
"std": 3.8
}, "low_age_high_education": {
"mean": 27.4,
"std": 3.1
}, "high_age_low_education": {
"mean": 23.5,
"std": 4.2
}, "high_age_high_education": {
"mean": 27.2,
"std": 3.3
}
},"inference": {
"low_age_low_education": {
"mean": 28.2,
"std": 2.4
}, "low_age_high_education": {
"mean": 28.4,
"std": 2.8
}, "high_age_low_education": {
"mean": 25.2,
"std": 3.9
}, "high_age_high_education": {
"mean": 27.3,
"std": 2.9
}
}, "reading_speed": {
"low_age_low_education": {
"mean": 21.5,
"std": 5.4
}, "low_age_high_education": {
"mean": 27.3,
"std": 5.5
}, "high_age_low_education": {
"mean": 23.0,
"std": 7.2
}, "high_age_high_education": {
"mean": 28.8,
"std": 5.2
}
}, "decoding_words": {
"low_age_low_education": {
"mean": 107.6,
"std": 27.8
}, "low_age_high_education": {
"mean": 112.9,
"std": 22.7
}, "high_age_low_education": {
"mean": 111.4,
"std": 26.1
}, "high_age_high_education": {
"mean": 122.9,
"std": 28.2
}
}, "decoding_non_words": {
"low_age_low_education": {
"mean": 95.8,
"std": 26.6
}, "low_age_high_education": {
"mean": 105.4,
"std": 29.5
}, "high_age_low_education": {
"mean": 103.4,
"std": 25.2
}, "high_age_high_education": {
"mean": 118.0,
"std": 26.8
}
},
# jönsson och winnerstam 2012
"pataka": {
"low_age_low_education": {
"mean": 5.8,
"std": 1.0
}, "low_age_high_education": {
"mean": 5.8,
"std": 1.0
}, "high_age_low_education": {
"mean": 5.8,
"std": 1.0
}, "high_age_high_education": {
"mean": 5.8,
"std": 1.0
}
}
}
# Function to calculate z-score
def calculate_z_score(test_score, mean, std_dev):
return (test_score - mean) / std_dev
def z_score_calculator(value, norm_mean, norm_sd):
z_value = (value - norm_mean) / norm_sd
stanine_value = round(1.25 * z_value + 5.5)
z_score = round(z_value, 2)
return z_score, stanine_value
def test_calculator(age, education, values, test):
if age <= 60 and education <= 12:
norm_mean = test_dict[test]["low_age_low_education"]["mean"]
norm_sd = test_dict[test]["low_age_low_education"]["std"]
z_score, stanine_value = z_score_calculator(values, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
elif age <= 60 and education > 12:
norm_mean = test_dict[test]["low_age_high_education"]["mean"]
norm_sd = test_dict[test]["low_age_high_education"]["std"]
z_score, stanine_value = z_score_calculator(values, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
elif age > 60 and education <= 12:
norm_mean = test_dict[test]["high_age_low_education"]["mean"]
norm_sd = test_dict[test]["high_age_low_education"]["std"]
z_score, stanine_value = z_score_calculator(values, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
elif age > 60 and education > 12:
norm_mean = test_dict[test]["high_age_high_education"]["mean"]
norm_sd = test_dict[test]["high_age_high_education"]["std"]
z_score, stanine_value = z_score_calculator(values, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
else:
print("missing value/ wrong format")
def bnt_calculator(age, education, bnt):
if age <= 60 and education <= 12:
norm_mean = 54.5
norm_sd = 3.2
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
elif age <= 60 and education > 12:
norm_mean = 54.0
norm_sd = 4.4
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
elif age > 60 and education <= 12:
norm_mean = 54.8
norm_sd = 3.3
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
elif age > 60 and education > 12:
norm_mean = 56.2
norm_sd = 3.4
z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
else:
print("missing value/ wrong format")
def fas_calculator(age, education, fas):
if age <= 60 and education <= 12:
norm_mean = 42.7
norm_sd = 13.7
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
elif age <= 60 and education > 12:
norm_mean = 46.7
norm_sd = 13.7
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
elif age > 60 and education <= 12:
norm_mean = 46.9
norm_sd = 10.4
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
elif age > 60 and education > 12:
norm_mean = 51.6
norm_sd = 12.6
z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
return norm_mean, norm_sd, z_score, stanine_value
else:
print("missing value/ wrong format")
def generate_graph(test_dict):
# Create a plot
fig, ax = plt.subplots()
# Adjust the margins to fix the labels being cut off
fig.subplots_adjust(left=0.25)
# Set axis labels and title
ax.set_xlabel('Stanine values')
ax.set_ylabel('Test')
# Set the x-axis to display the stanine values
ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9])
ax.set_xticklabels(['1', '2', '3', '4', '5', '6', '7', '8', '9'])
# Set the y-axis to display the tests
ax.set_yticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
# Set the test labels to the keys in test_dict (in reverse order)
ax.set_yticklabels(reversed(list(test_dict.keys())))
# Set the range of the x-axis
ax.set_xlim([0, 10])
i = 1
for test in reversed(list(test_dict.keys())):
#print("the test is", test)
ax.scatter(test_dict[test][4], i, s=50, color='black', label=test)
i = i + 1
# Save the graph as a png file
fig.savefig('test_profile.png')
return 'test_profile.png'
def create_pdf(test_dict, logo_path, plot_path):
pdf = FPDF()
pdf.add_page()
pdf.set_xy(0, 0)
pdf.set_font("Arial", size=12)
# Add logos
x_positions = [25, 85, 145]
for i, logo_path in enumerate(logo_paths):
pdf.image(logo_path, x=x_positions[i], y=8, w=40)
pdf.set_xy(10, 50)
# Add title and center it
title = "Patient Summary"
pdf.set_font("Times", style="B", size=12)
title_width = pdf.get_string_width(title) + 6
pdf.cell((210 - title_width) / 2)
pdf.cell(title_width, 10, title, 0, 1, "C")
# Add z-score and center it
pdf.set_font("Times", size=12)
tests_per_line = 1
tests_count = len(test_dict)
line_count = tests_count // tests_per_line + (1 if tests_count % tests_per_line > 0 else 0)
test_index = 0
left_margin = 15
col_width = (210 - 2 * left_margin) / tests_per_line
for line in range(line_count):
pdf.set_x(left_margin)
for test in list(test_dict.keys())[test_index:test_index + tests_per_line]:
# Set the font to bold for the test value
pdf.set_font("Arial", style="B", size=8)
test_text = "{}: ".format(test)
test_width = pdf.get_string_width(test_text)
pdf.cell(test_width, 6, test_text, 0, 0, "C") # Changed the line height to 6
# Set the font to normal for the rest of the text
pdf.set_font("Arial", size=8)
z_score_text = "{:.2f} (Mean: {:.2f}, Std: {:.2f})".format(
test_dict[test][3], test_dict[test][1], test_dict[test][2]
)
z_score_width = pdf.get_string_width(z_score_text) + 2 # Reduced the additional width to 2
pdf.cell((210 / tests_per_line - test_width - z_score_width) / 2)
pdf.cell(z_score_width, 6, z_score_text, 0, 0, "C") # Changed the line height to 6
test_index += 1
pdf.ln(12) # Reduced the line spacing to 12
# Add logo
pdf.add_page()
pdf.image(plot_path, x=10, y=20, w=200)
# pdf.set_xy(10, 40)
# Add tool description and center it
pdf.set_xy(10, 200)
pdf.set_font("Arial", size=10)
description = "This PDF report was generated using the Patient Summary App."
pdf.multi_cell(0, 10, description, 0, "C")
# Add explanatory text about the collaboration between KI and KTH
pdf.set_xy(10, 220)
pdf.set_font("Arial", size=8)
collaboration_text = (
"Den här PDF:en är en del av ett samarbetsprojekt mellan Karolinska Institutet (KI) och "
"Kungliga Tekniska Högskolan (KTH) med målsättningen att använda artificiell intelligens (AI) och "
"teknik för att minska administration i sjukhusarbete. Projektet fokuserar på att utveckla och "
"implementera AI-baserade lösningar för att förbättra arbetsflöden, öka effektiviteten och "
"minska den administrativa bördan för sjukvårdspersonal. För frågor om formuläret kontakta Fredrik Sand fredrik.sand-aronsson@regionstockholm.se, för frågor om teknik kontakta Birger Moëll bmoell@kth.se."
)
line_width = 190
line_height = pdf.font_size_pt * 0.6
lines = collaboration_text.split(' ')
current_line = ''
for word in lines:
if pdf.get_string_width(current_line + word) < line_width:
current_line += word + ' '
else:
pdf.cell(line_width, line_height, current_line, 0, 1)
current_line = word + ' '
pdf.cell(line_width, line_height, current_line, 0, 1)
return pdf
def pdf_to_base64(pdf):
with open(pdf, "rb") as file:
return base64.b64encode(file.read()).decode('utf-8')
# Title and description
st.title("Z-Score Calculator")
st.write("Enter your test score, age, and education level to calculate the z-score.")
# Input fields
#test_score = st.number_input("Test Score", min_value=0, value=0, step=1)
age = st.number_input("Age", min_value=0, value=18, step=1)
education_level = st.number_input("Education Level in years", min_value=0, value=18, step=1)
isw = st.number_input("ISW", min_value=0.0, value=0.0, step=0.01)
bnt = st.number_input("BNT", min_value=0, value=0, step=1)
fas = st.number_input("FAS", min_value=0, value=0, step=1)
animal = st.number_input("Animal", min_value=0, value=0, step=1)
verb = st.number_input("Verb", min_value=0, value=0, step=1)
repetition = st.number_input("Repetition", min_value=0, value=0, step=1)
logicogrammatic = st.number_input("Logicogrammatic", min_value=0, value=0, step=1)
inference = st.number_input("Inference", min_value=0, value=0, step=1)
reading_speed = st.number_input("Reading Speed", min_value=0, value=0, step=1)
decoding_words = st.number_input("Decoding Words", min_value=0.0, value=0.0, step=0.01)
decoding_non_words = st.number_input("Decoding Non-Words", min_value=0.0, value=0.0, step=0.01)
months_backward = st.number_input("Months Backward", min_value=0.0, value=0.0, step=0.01)
pataka = st.number_input("Pataka", min_value=0.0, value=0.0, step=0.01)
# add all the tests
# Calculate mean and standard deviation based on age and education level
# For simplicity, we will use made-up values for mean and std_dev
mean = np.random.randint(50, 100)
std_dev = np.random.randint(10, 30)
# Calculate z-score and display result
if st.button("Calculate Z-Score"):
profile = test_profile(age, education_level, isw, bnt, fas)
# for each value in the profile, calculate the z-score
bnt_mean, bnt_std, z_bnt, stanine_bnt = bnt_calculator(age, education_level, bnt)
fas_mean, fas_std, z_fas, stanine_fas = fas_calculator(age, education_level, fas)
animal_mean, animal_std, animal_z, animal_stanine = test_calculator(age, education_level, animal, "animal")
verb_mean, verb_std, verb_z, verb_stanine = test_calculator(age, education_level, verb, "verb")
repetition_mean, repetition_std, repetition_z, repetition_stanine = test_calculator(age, education_level, repetition, "repetition")
months_backward_mean, months_backward_std, months_backward_z, months_backward_stanine = test_calculator(age, education_level, months_backward, "months_backward")
logicogrammatic_mean, logicogrammatic_std, logicogrammatic_z, logicogrammatic_stanine = test_calculator(age, education_level, logicogrammatic, "logicogrammatic")
inference_mean, inference_std, inference_z, inference_stanine = test_calculator(age, education_level, inference, "inference")
reading_speed_mean, reading_speed_std, reading_speed_z, reading_speed_stanine = test_calculator(age, education_level, reading_speed, "reading_speed")
decoding_words_mean, decoding_words_std, decoding_words_z, decoding_words_stanine = test_calculator(age, education_level, decoding_words, "decoding_words")
decoding_non_words_mean, decoding_non_words_std, decoding_non_words_z, decoding_non_words_stanine = test_calculator(age, education_level, decoding_non_words, "decoding_non_words")
pataka_mean, pataka_std, pataka_z, pataka_stanine = test_calculator(age, education_level, pataka, "pataka")
## add all the tests with their values to an array
## CREATA A DICTORINARY WITH ALL THE TESTS AND THEIR Z-SCORES AND STANINE VALUES
test_dict = {
"bnt": [bnt, bnt_mean, bnt_std, z_bnt, stanine_bnt],
"fas": [fas, fas_mean, fas_std, z_fas, stanine_fas],
"animal": [animal, animal_mean, animal_std, animal_z, animal_stanine],
"verb": [verb, verb_mean, verb_std, verb_z, verb_stanine],
"repetition": [repetition, repetition_mean, repetition_std, repetition_z, repetition_stanine],
"months_backward": [months_backward, months_backward_mean, months_backward_std, months_backward_z, months_backward_stanine],
"logicogrammatic": [logicogrammatic, logicogrammatic_mean, logicogrammatic_std, logicogrammatic_z, logicogrammatic_stanine],
"inference": [inference, inference_mean, inference_std, inference_z, inference_stanine],
"reading_speed": [reading_speed, reading_speed_mean, reading_speed_std, reading_speed_z, reading_speed_stanine],
"decoding_words": [decoding_words, decoding_words_mean, decoding_words_std, decoding_words_z, decoding_words_stanine],
"decoding_non_words": [decoding_non_words, decoding_non_words_mean, decoding_non_words_std, decoding_non_words_z, decoding_non_words_stanine],
"pataka": [pataka, pataka_mean, pataka_std, pataka_z, pataka_stanine]
}
# z_values = [z_bnt, z_fas, animal_z, verb_z, repetition_z, months_backward_z, logicogrammatic_z, inference_z, reading_speed_z, decoding_words_z, decoding_non_words_z, pataka_z]
# ## add all the stanines to a list
# stanine_values = [stanine_bnt, stanine_fas, animal_stanine, verb_stanine, repetition_stanine, months_backward_stanine, logicogrammatic_stanine, inference_stanine, reading_speed_stanine, decoding_words_stanine, decoding_non_words_stanine, pataka_stanine]
# loop over and write out all the z values
# loop over all the values in test dict and print out the z-score, mean and std_dev and stanine
for key, value in test_dict.items():
st.write(f"Your {key} z-score is: {value[3]:.2f}")
st.write(f"Mean: {value[1]}, Standard Deviation: {value[2]}")
st.write(f"Stanine: {value[4]}")
# Create PDF
logo_paths = ["logo.jpg", "logo2.jpg", "logo3.jpg"]
# create the plot from the dataframe
# check if education level is more than 12 years, if more than 12, set value to one, otherwise zero
plot_path = generate_graph(test_dict)
# create an image from the plot and add to streamlit display
image = Image.open(plot_path)
st.image(image, caption='Stanine plot', use_column_width=True)
pdf_filename = "z_score_report.pdf"
pdf = create_pdf(test_dict, logo_paths, plot_path)
pdf.output(name=pdf_filename)
# Download PDF
with open(pdf_filename, "rb") as file:
base64_pdf = base64.b64encode(file.read()).decode('utf-8')
pdf_display = f'<a href="data:application/octet-stream;base64,{base64_pdf}" download="{pdf_filename}">Download PDF</a>'
st.markdown(pdf_display, unsafe_allow_html=True)
# Remove PDF file after download
if os.path.exists(pdf_filename):
os.remove(pdf_filename) |