File size: 19,218 Bytes
0de5d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import streamlit as st
import numpy as np
import scipy.stats as stats
from fpdf import FPDF
import base64
import os
from plots import test_profile
import matplotlib.pyplot as plt
from PIL import Image

test_dict = {
    "animal": {
        "low_age_low_education": {
            "mean": 21.0,
            "std": 7.0
        }, "low_age_high_education": {
            "mean": 22.4,
            "std": 6.8
        }, "high_age_low_education": {
            "mean": 22.1,
            "std": 5.7
        }, "high_age_high_education": {
            "mean": 25.6,
            "std": 5.6
        }
    }, "verb": {
        "low_age_low_education": {
            "mean": 17.6,
            "std": 4.3
        }, "low_age_high_education": {
            "mean": 20.5,
            "std": 5.4
        }, "high_age_low_education": {
            "mean": 16.7,
            "std": 6.1
        }, "high_age_high_education": {
            "mean": 22.7,
            "std": 5.1
        }
    },  "repetition": {
        "low_age_low_education": {
            "mean": 24.8,
            "std": 4.8
        }, "low_age_high_education": {
            "mean": 25.9,
            "std": 3.7
        }, "high_age_low_education": {
            "mean": 24.0,
            "std": 4.9
        }, "high_age_high_education": {
            "mean": 25.8,
            "std": 3.8
        }
    }, "months_backward": {
        "low_age_low_education": {
            "mean": 10.3,
            "std": 4.5
        }, "low_age_high_education": {
            "mean": 9.8,
            "std": 3.2
        }, "high_age_low_education": {
            "mean": 10.0,
            "std": 3.2
        }, "high_age_high_education": {
            "mean": 9.9,
            "std": 3.5
        }
    },
    "logicogrammatic": {
        "low_age_low_education": {
            "mean": 27.2,
            "std": 3.8
        }, "low_age_high_education": {
            "mean": 27.4,
            "std": 3.1
        }, "high_age_low_education": {
            "mean": 23.5,
            "std": 4.2
        }, "high_age_high_education": {
            "mean": 27.2,
            "std": 3.3
        }
    },"inference": {
        "low_age_low_education": {
            "mean": 28.2,
            "std": 2.4
        }, "low_age_high_education": {
            "mean": 28.4,
            "std": 2.8
        }, "high_age_low_education": {
            "mean": 25.2,
            "std": 3.9
        }, "high_age_high_education": {
            "mean": 27.3,
            "std": 2.9
        }
    }, "reading_speed": {
        "low_age_low_education": {
            "mean": 21.5,
            "std": 5.4
        }, "low_age_high_education": {
            "mean": 27.3,
            "std": 5.5
        }, "high_age_low_education": {
            "mean": 23.0,
            "std": 7.2
        }, "high_age_high_education": {
            "mean": 28.8,
            "std": 5.2
        }
    }, "decoding_words": {
        "low_age_low_education": {
            "mean": 107.6,
            "std": 27.8
        }, "low_age_high_education": {
            "mean": 112.9,
            "std": 22.7
        }, "high_age_low_education": {
            "mean": 111.4,
            "std": 26.1
        }, "high_age_high_education": {
            "mean": 122.9,
            "std": 28.2
        }
    }, "decoding_non_words": {
        "low_age_low_education": {
            "mean": 95.8,
            "std": 26.6
        }, "low_age_high_education": {
            "mean": 105.4,
            "std": 29.5
        }, "high_age_low_education": {
            "mean": 103.4,
            "std": 25.2
        }, "high_age_high_education": {
            "mean": 118.0,
            "std": 26.8
        }
    },
    # jönsson och winnerstam 2012
    "pataka": {
        "low_age_low_education": {
            "mean": 5.8,
            "std": 1.0
        }, "low_age_high_education": {
             "mean": 5.8,
            "std": 1.0
        }, "high_age_low_education": {
             "mean": 5.8,
            "std": 1.0
        }, "high_age_high_education": {
            "mean": 5.8,
            "std": 1.0
        }
    }
}


# Function to calculate z-score
def calculate_z_score(test_score, mean, std_dev):
    return (test_score - mean) / std_dev

def z_score_calculator(value, norm_mean, norm_sd):
    z_value = (value - norm_mean) / norm_sd
    stanine_value = round(1.25 * z_value + 5.5)
    z_score = round(z_value, 2)
    return z_score, stanine_value

def test_calculator(age, education, values, test):
        if age <= 60 and education <= 12:
            norm_mean = test_dict[test]["low_age_low_education"]["mean"]
            norm_sd = test_dict[test]["low_age_low_education"]["std"]
            z_score, stanine_value = z_score_calculator(values, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        elif age <= 60 and education > 12:
            norm_mean = test_dict[test]["low_age_high_education"]["mean"]
            norm_sd = test_dict[test]["low_age_high_education"]["std"]
            z_score, stanine_value = z_score_calculator(values, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        elif age > 60 and education <= 12:
            norm_mean = test_dict[test]["high_age_low_education"]["mean"]
            norm_sd = test_dict[test]["high_age_low_education"]["std"]
            z_score, stanine_value = z_score_calculator(values, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        elif age > 60 and education > 12:
            norm_mean = test_dict[test]["high_age_high_education"]["mean"]
            norm_sd = test_dict[test]["high_age_high_education"]["std"]
            z_score, stanine_value = z_score_calculator(values, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        else:
            print("missing value/ wrong format")


def bnt_calculator(age, education, bnt):
        if age <= 60 and education <= 12:
            norm_mean = 54.5
            norm_sd = 3.2
            z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        elif age <= 60 and education > 12:
            norm_mean = 54.0
            norm_sd = 4.4
            z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        elif age > 60 and education <= 12:
            norm_mean = 54.8
            norm_sd = 3.3
            z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        elif age > 60 and education > 12:
            norm_mean = 56.2
            norm_sd = 3.4
            z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        else:
            print("missing value/ wrong format")

def fas_calculator(age, education, fas):
    if age <= 60 and education <= 12:
        norm_mean = 42.7
        norm_sd = 13.7
        z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
        return norm_mean, norm_sd, z_score, stanine_value
    elif age <= 60 and education > 12:
        norm_mean = 46.7
        norm_sd = 13.7
        z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
        return norm_mean, norm_sd, z_score, stanine_value
    elif age > 60 and education <= 12:
        norm_mean = 46.9
        norm_sd = 10.4
        z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
        return norm_mean, norm_sd, z_score, stanine_value
    elif age > 60 and education > 12:
        norm_mean = 51.6
        norm_sd = 12.6
        z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
        return norm_mean, norm_sd, z_score, stanine_value
    else:
        print("missing value/ wrong format")

def generate_graph(test_dict):
    # Create a plot
    fig, ax = plt.subplots()

    # Adjust the margins to fix the labels being cut off
    fig.subplots_adjust(left=0.25)

    # Set axis labels and title
    ax.set_xlabel('Stanine values')
    ax.set_ylabel('Test')

    # Set the x-axis to display the stanine values
    ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9])
    ax.set_xticklabels(['1', '2', '3', '4', '5', '6', '7', '8', '9'])

    # Set the y-axis to display the tests
    ax.set_yticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

    # Set the test labels to the keys in test_dict (in reverse order)
    ax.set_yticklabels(reversed(list(test_dict.keys())))

    # Set the range of the x-axis
    ax.set_xlim([0, 10])

    i = 1

    for test in reversed(list(test_dict.keys())):
        #print("the test is", test)
        ax.scatter(test_dict[test][4], i, s=50, color='black', label=test)
        i = i + 1

    # Save the graph as a png file
    fig.savefig('test_profile.png')
    return 'test_profile.png'


def create_pdf(test_dict, logo_path, plot_path):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_xy(0, 0)
    pdf.set_font("Arial", size=12)

    # Add logos
    x_positions = [25, 85, 145]
    for i, logo_path in enumerate(logo_paths):
        pdf.image(logo_path, x=x_positions[i], y=8, w=40)
    pdf.set_xy(10, 50)


    # Add title and center it
    title = "Patient Summary"
    pdf.set_font("Times", style="B", size=12)
    title_width = pdf.get_string_width(title) + 6
    pdf.cell((210 - title_width) / 2)
    pdf.cell(title_width, 10, title, 0, 1, "C")

    # Add z-score and center it

    pdf.set_font("Times", size=12)

    tests_per_line = 1
    tests_count = len(test_dict)
    line_count = tests_count // tests_per_line + (1 if tests_count % tests_per_line > 0 else 0)

    test_index = 0
    left_margin = 15
    col_width = (210 - 2 * left_margin) / tests_per_line

    for line in range(line_count):
        pdf.set_x(left_margin)
        for test in list(test_dict.keys())[test_index:test_index + tests_per_line]:
            # Set the font to bold for the test value
            pdf.set_font("Arial", style="B", size=8)
            test_text = "{}: ".format(test)
            test_width = pdf.get_string_width(test_text)
            pdf.cell(test_width, 6, test_text, 0, 0, "C")  # Changed the line height to 6

            # Set the font to normal for the rest of the text
            pdf.set_font("Arial", size=8)
            z_score_text = "{:.2f} (Mean: {:.2f}, Std: {:.2f})".format(
                test_dict[test][3], test_dict[test][1], test_dict[test][2]
            )
            z_score_width = pdf.get_string_width(z_score_text) + 2  # Reduced the additional width to 2
            pdf.cell((210 / tests_per_line - test_width - z_score_width) / 2)
            pdf.cell(z_score_width, 6, z_score_text, 0, 0, "C")  # Changed the line height to 6

            test_index += 1
        pdf.ln(12)  # Reduced the line spacing to 12

    # Add logo
    pdf.add_page()

    pdf.image(plot_path, x=10, y=20, w=200)
    # pdf.set_xy(10, 40)

    # Add tool description and center it
    pdf.set_xy(10, 200)
    pdf.set_font("Arial", size=10)
    description = "This PDF report was generated using the Patient Summary App."
    pdf.multi_cell(0, 10, description, 0, "C")

     # Add explanatory text about the collaboration between KI and KTH
    pdf.set_xy(10, 220)
    pdf.set_font("Arial", size=8)
    collaboration_text = (
        "Den här PDF:en är en del av ett samarbetsprojekt mellan Karolinska Institutet (KI) och "
        "Kungliga Tekniska Högskolan (KTH) med målsättningen att använda artificiell intelligens (AI) och "
        "teknik för att minska administration i sjukhusarbete. Projektet fokuserar på att utveckla och "
        "implementera AI-baserade lösningar för att förbättra arbetsflöden, öka effektiviteten och "
        "minska den administrativa bördan för sjukvårdspersonal. För frågor om formuläret kontakta Fredrik Sand fredrik.sand-aronsson@regionstockholm.se, för frågor om teknik kontakta Birger Moëll bmoell@kth.se."
    )
    line_width = 190
    line_height = pdf.font_size_pt * 0.6
    lines = collaboration_text.split(' ')
    current_line = ''
    for word in lines:
        if pdf.get_string_width(current_line + word) < line_width:
            current_line += word + ' '
        else:
            pdf.cell(line_width, line_height, current_line, 0, 1)
            current_line = word + ' '
    pdf.cell(line_width, line_height, current_line, 0, 1)

    return pdf

def pdf_to_base64(pdf):
    with open(pdf, "rb") as file:
        return base64.b64encode(file.read()).decode('utf-8')


# Title and description
st.title("Z-Score Calculator")
st.write("Enter your test score, age, and education level to calculate the z-score.")

# Input fields
#test_score = st.number_input("Test Score", min_value=0, value=0, step=1)
age = st.number_input("Age", min_value=0, value=18, step=1)
education_level = st.number_input("Education Level in years", min_value=0, value=18, step=1)
isw = st.number_input("ISW", min_value=0.0, value=0.0, step=0.01)
bnt = st.number_input("BNT", min_value=0, value=0, step=1)
fas = st.number_input("FAS", min_value=0, value=0, step=1)
animal = st.number_input("Animal", min_value=0, value=0, step=1)
verb = st.number_input("Verb", min_value=0, value=0, step=1)
repetition = st.number_input("Repetition", min_value=0, value=0, step=1)
logicogrammatic = st.number_input("Logicogrammatic", min_value=0, value=0, step=1)
inference = st.number_input("Inference", min_value=0, value=0, step=1)
reading_speed = st.number_input("Reading Speed", min_value=0, value=0, step=1)
decoding_words = st.number_input("Decoding Words", min_value=0.0, value=0.0, step=0.01)
decoding_non_words = st.number_input("Decoding Non-Words", min_value=0.0, value=0.0, step=0.01)
months_backward = st.number_input("Months Backward", min_value=0.0, value=0.0, step=0.01)
pataka = st.number_input("Pataka", min_value=0.0, value=0.0, step=0.01)


# add all the tests


# Calculate mean and standard deviation based on age and education level
# For simplicity, we will use made-up values for mean and std_dev
mean = np.random.randint(50, 100)
std_dev = np.random.randint(10, 30)

# Calculate z-score and display result
if st.button("Calculate Z-Score"):
    profile = test_profile(age, education_level, isw, bnt, fas)


    # for each value in the profile, calculate the z-score
    bnt_mean, bnt_std, z_bnt, stanine_bnt = bnt_calculator(age, education_level, bnt)
    fas_mean, fas_std, z_fas, stanine_fas = fas_calculator(age, education_level, fas)
    
    animal_mean, animal_std, animal_z, animal_stanine = test_calculator(age, education_level, animal, "animal")
    verb_mean, verb_std, verb_z, verb_stanine = test_calculator(age, education_level, verb, "verb")
    repetition_mean, repetition_std, repetition_z, repetition_stanine = test_calculator(age, education_level, repetition, "repetition")
    months_backward_mean, months_backward_std, months_backward_z, months_backward_stanine = test_calculator(age, education_level, months_backward, "months_backward")
    logicogrammatic_mean, logicogrammatic_std, logicogrammatic_z, logicogrammatic_stanine = test_calculator(age, education_level, logicogrammatic, "logicogrammatic")
    inference_mean, inference_std, inference_z, inference_stanine = test_calculator(age, education_level, inference, "inference")
    reading_speed_mean, reading_speed_std, reading_speed_z, reading_speed_stanine = test_calculator(age, education_level, reading_speed, "reading_speed")
    decoding_words_mean, decoding_words_std, decoding_words_z, decoding_words_stanine = test_calculator(age, education_level, decoding_words, "decoding_words")
    decoding_non_words_mean, decoding_non_words_std, decoding_non_words_z, decoding_non_words_stanine = test_calculator(age, education_level, decoding_non_words, "decoding_non_words")
    pataka_mean, pataka_std, pataka_z, pataka_stanine = test_calculator(age, education_level, pataka, "pataka")

    ## add all the tests with their values to an array

    ## CREATA A DICTORINARY WITH ALL THE TESTS AND THEIR Z-SCORES AND STANINE VALUES
    test_dict = {
        "bnt": [bnt, bnt_mean, bnt_std, z_bnt, stanine_bnt],
        "fas": [fas, fas_mean, fas_std, z_fas, stanine_fas],
        "animal": [animal, animal_mean, animal_std, animal_z, animal_stanine],
        "verb": [verb, verb_mean, verb_std, verb_z, verb_stanine],
        "repetition": [repetition, repetition_mean, repetition_std, repetition_z, repetition_stanine],
        "months_backward": [months_backward, months_backward_mean, months_backward_std, months_backward_z, months_backward_stanine],
        "logicogrammatic": [logicogrammatic, logicogrammatic_mean, logicogrammatic_std, logicogrammatic_z, logicogrammatic_stanine],
        "inference": [inference, inference_mean, inference_std, inference_z, inference_stanine],
        "reading_speed": [reading_speed, reading_speed_mean, reading_speed_std, reading_speed_z, reading_speed_stanine],
        "decoding_words": [decoding_words, decoding_words_mean, decoding_words_std, decoding_words_z, decoding_words_stanine],
        "decoding_non_words": [decoding_non_words, decoding_non_words_mean, decoding_non_words_std, decoding_non_words_z, decoding_non_words_stanine],
        "pataka": [pataka, pataka_mean, pataka_std, pataka_z, pataka_stanine]
    }

    # z_values = [z_bnt, z_fas, animal_z, verb_z, repetition_z, months_backward_z, logicogrammatic_z, inference_z, reading_speed_z, decoding_words_z, decoding_non_words_z, pataka_z]
    
    # ## add all the stanines to a list
    # stanine_values = [stanine_bnt, stanine_fas, animal_stanine, verb_stanine, repetition_stanine, months_backward_stanine, logicogrammatic_stanine, inference_stanine, reading_speed_stanine, decoding_words_stanine, decoding_non_words_stanine, pataka_stanine]

    # loop over and write out all the z values

    # loop over all the values in test dict and print out the z-score, mean and std_dev and stanine
    for key, value in test_dict.items():
        st.write(f"Your {key} z-score is: {value[3]:.2f}")
        st.write(f"Mean: {value[1]}, Standard Deviation: {value[2]}")
        st.write(f"Stanine: {value[4]}")

    # Create PDF

    logo_paths = ["logo.jpg", "logo2.jpg", "logo3.jpg"]

    # create the plot from the dataframe

    # check if education level is more than 12 years, if more than 12, set value to one, otherwise zero

    plot_path = generate_graph(test_dict)

    # create an image from the plot and add to streamlit display
    image = Image.open(plot_path)
    st.image(image, caption='Stanine plot', use_column_width=True)

    pdf_filename = "z_score_report.pdf"
    pdf = create_pdf(test_dict, logo_paths, plot_path)
    pdf.output(name=pdf_filename)

    # Download PDF
    with open(pdf_filename, "rb") as file:
        base64_pdf = base64.b64encode(file.read()).decode('utf-8')
        pdf_display = f'<a href="data:application/octet-stream;base64,{base64_pdf}" download="{pdf_filename}">Download PDF</a>'
        st.markdown(pdf_display, unsafe_allow_html=True)

    # Remove PDF file after download
    if os.path.exists(pdf_filename):
        os.remove(pdf_filename)