Spaces:
Build error
Build error
File size: 3,025 Bytes
993f0db e6a9b5c 993f0db e6a9b5c 993f0db e6a9b5c 993f0db e6a9b5c 993f0db e6a9b5c 993f0db e6a9b5c 993f0db e6a9b5c 993f0db e6a9b5c 993f0db e6a9b5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import streamlit as st
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import torch
import numpy as np
import soundfile as sf
import io
import librosa
st.title("Syllables per Second Calculator")
st.write("Upload an audio file to calculate the number of 'p', 't', and 'k' syllables per second.")
def get_syllables_per_second(audio_file):
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft")
audio_input, original_sample_rate = sf.read(io.BytesIO(audio_file.read()))
target_sample_rate = processor.feature_extractor.sampling_rate
# resample the sample rate if not 16 k
if original_sample_rate != target_sample_rate:
if audio_input.ndim > 1:
audio_input = np.asarray([librosa.resample(channel, orig_sr=original_sample_rate, target_sr=target_sample_rate) for channel in audio_input.T]).T
else:
audio_input = librosa.resample(audio_input, orig_sr=original_sample_rate, target_sr=target_sample_rate)
# make the audio mono if it is stereo
if audio_input.ndim > 1 and audio_input.shape[1] == 2:
audio_input = np.mean(audio_input, axis=1)
input_values = processor(audio_input, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids, output_char_offsets=True)
offsets = transcription['char_offsets']
print("the offets are: ", offsets)
# Find the start and end time offsets of the syllables
syllable_offsets = [item for item in offsets[0] if item['char'] in ['p', 't', 'k']]
if syllable_offsets: # if any syllable is found
first_syllable_offset = syllable_offsets[0]['start_offset'] * 0.02
last_syllable_offset = syllable_offsets[-1]['end_offset'] * 0.02
print("the first syllable offset is: ", first_syllable_offset)
print("the last syllable offset is: ", last_syllable_offset)
# Duration from the first to the last syllable
syllable_duration = last_syllable_offset - first_syllable_offset
print("the syllable duration is: ", syllable_duration)
else:
syllable_duration = 0
syllable_count = len(syllable_offsets)
audio_duration = len(audio_input) / target_sample_rate
print("the audio duration is: ", audio_duration)
print("the syllable count is: ", syllable_count)
#print("the syllabels per second is: ", syllable_count / audio_duration)
syllables_per_second = syllable_count / syllable_duration if syllable_duration > 0 else 0
return syllables_per_second
uploaded_file = st.file_uploader("Choose an audio file", type=["wav"])
if uploaded_file is not None:
with st.spinner("Processing the audio file..."):
result = get_syllables_per_second(uploaded_file)
st.write("Syllables per second: ", result) |