import streamlit as st from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import torch import numpy as np import soundfile as sf import io import librosa import matplotlib.pyplot as plt st.title("Syllables per Second Calculator") st.write("Upload an audio file to calculate the number of 'p', 't', and 'k' syllables per second.") def get_syllables_per_second(audio_file): processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-xlsr-53-espeak-cv-ft") audio_input, original_sample_rate = sf.read(io.BytesIO(audio_file.read())) target_sample_rate = processor.feature_extractor.sampling_rate # resample the sample rate if not 16 k if original_sample_rate != target_sample_rate: if audio_input.ndim > 1: audio_input = np.asarray([librosa.resample(channel, orig_sr=original_sample_rate, target_sr=target_sample_rate) for channel in audio_input.T]).T else: audio_input = librosa.resample(audio_input, orig_sr=original_sample_rate, target_sr=target_sample_rate) # make the audio mono if it is stereo if audio_input.ndim > 1 and audio_input.shape[1] == 2: audio_input = np.mean(audio_input, axis=1) input_values = processor(audio_input, return_tensors="pt").input_values with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids, output_char_offsets=True) offsets = transcription['char_offsets'] print("the offets are: ", offsets) # Find the start and end time offsets of the syllables syllable_offsets = [item for item in offsets[0] if item['char'] in ['p', 't', 'k']] if syllable_offsets: # if any syllable is found first_syllable_offset = syllable_offsets[0]['start_offset'] * 0.02 last_syllable_offset = syllable_offsets[-1]['end_offset'] * 0.02 print("the first syllable offset is: ", first_syllable_offset) print("the last syllable offset is: ", last_syllable_offset) # Duration from the first to the last syllable syllable_duration = last_syllable_offset - first_syllable_offset print("the syllable duration is: ", syllable_duration) else: syllable_duration = 0 syllable_count = len(syllable_offsets) audio_duration = len(audio_input) / target_sample_rate print("the audio duration is: ", audio_duration) print("the syllable count is: ", syllable_count) #print("the syllabels per second is: ", syllable_count / audio_duration) syllables_per_second = syllable_count / syllable_duration if syllable_duration > 0 else 0 times = [] syllables_per_second_time = [] for i in range(len(syllable_offsets) - 1): start = syllable_offsets[i]['start_offset'] * 0.02 end = syllable_offsets[i + 1]['end_offset'] * 0.02 duration = end - start rate = 1 / duration if duration > 0 else 0 times.append(start) syllables_per_second_time.append(rate) plt.plot(times, syllables_per_second_time) plt.xlabel('Time (s)') plt.ylabel('Syllables per second') # plt.show() # save the figure plt.savefig('syllables_per_second.png') # show the image using streamlit st.image('syllables_per_second.png') return syllables_per_second uploaded_file = st.file_uploader("Choose an audio file", type=["wav"]) if uploaded_file is not None: with st.spinner("Processing the audio file..."): result = get_syllables_per_second(uploaded_file) st.write("Syllables per second: ", result)