Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.utils import weight_norm | |
from torchaudio.transforms import Resample | |
from .nvSTFT import STFT | |
from .pcmer import PCmer | |
def l2_regularization(model, l2_alpha): | |
l2_loss = [] | |
for module in model.modules(): | |
if type(module) is nn.Conv2d: | |
l2_loss.append((module.weight ** 2).sum() / 2.0) | |
return l2_alpha * sum(l2_loss) | |
class FCPE(nn.Module): | |
def __init__( | |
self, | |
input_channel=128, | |
out_dims=360, | |
n_layers=12, | |
n_chans=512, | |
use_siren=False, | |
use_full=False, | |
loss_mse_scale=10, | |
loss_l2_regularization=False, | |
loss_l2_regularization_scale=1, | |
loss_grad1_mse=False, | |
loss_grad1_mse_scale=1, | |
f0_max=1975.5, | |
f0_min=32.70, | |
confidence=False, | |
threshold=0.05, | |
use_input_conv=True | |
): | |
super().__init__() | |
if use_siren is True: | |
raise ValueError("Siren is not supported yet.") | |
if use_full is True: | |
raise ValueError("Full model is not supported yet.") | |
self.loss_mse_scale = loss_mse_scale if (loss_mse_scale is not None) else 10 | |
self.loss_l2_regularization = loss_l2_regularization if (loss_l2_regularization is not None) else False | |
self.loss_l2_regularization_scale = loss_l2_regularization_scale if (loss_l2_regularization_scale | |
is not None) else 1 | |
self.loss_grad1_mse = loss_grad1_mse if (loss_grad1_mse is not None) else False | |
self.loss_grad1_mse_scale = loss_grad1_mse_scale if (loss_grad1_mse_scale is not None) else 1 | |
self.f0_max = f0_max if (f0_max is not None) else 1975.5 | |
self.f0_min = f0_min if (f0_min is not None) else 32.70 | |
self.confidence = confidence if (confidence is not None) else False | |
self.threshold = threshold if (threshold is not None) else 0.05 | |
self.use_input_conv = use_input_conv if (use_input_conv is not None) else True | |
self.cent_table_b = torch.Tensor( | |
np.linspace(self.f0_to_cent(torch.Tensor([f0_min]))[0], self.f0_to_cent(torch.Tensor([f0_max]))[0], | |
out_dims)) | |
self.register_buffer("cent_table", self.cent_table_b) | |
# conv in stack | |
_leaky = nn.LeakyReLU() | |
self.stack = nn.Sequential( | |
nn.Conv1d(input_channel, n_chans, 3, 1, 1), | |
nn.GroupNorm(4, n_chans), | |
_leaky, | |
nn.Conv1d(n_chans, n_chans, 3, 1, 1)) | |
# transformer | |
self.decoder = PCmer( | |
num_layers=n_layers, | |
num_heads=8, | |
dim_model=n_chans, | |
dim_keys=n_chans, | |
dim_values=n_chans, | |
residual_dropout=0.1, | |
attention_dropout=0.1) | |
self.norm = nn.LayerNorm(n_chans) | |
# out | |
self.n_out = out_dims | |
self.dense_out = weight_norm( | |
nn.Linear(n_chans, self.n_out)) | |
def forward(self, mel, infer=True, gt_f0=None, return_hz_f0=False, cdecoder = "local_argmax"): | |
""" | |
input: | |
B x n_frames x n_unit | |
return: | |
dict of B x n_frames x feat | |
""" | |
if cdecoder == "argmax": | |
self.cdecoder = self.cents_decoder | |
elif cdecoder == "local_argmax": | |
self.cdecoder = self.cents_local_decoder | |
if self.use_input_conv: | |
x = self.stack(mel.transpose(1, 2)).transpose(1, 2) | |
else: | |
x = mel | |
x = self.decoder(x) | |
x = self.norm(x) | |
x = self.dense_out(x) # [B,N,D] | |
x = torch.sigmoid(x) | |
if not infer: | |
gt_cent_f0 = self.f0_to_cent(gt_f0) # mel f0 #[B,N,1] | |
gt_cent_f0 = self.gaussian_blurred_cent(gt_cent_f0) # #[B,N,out_dim] | |
loss_all = self.loss_mse_scale * F.binary_cross_entropy(x, gt_cent_f0) # bce loss | |
# l2 regularization | |
if self.loss_l2_regularization: | |
loss_all = loss_all + l2_regularization(model=self, l2_alpha=self.loss_l2_regularization_scale) | |
x = loss_all | |
if infer: | |
x = self.cdecoder(x) | |
x = self.cent_to_f0(x) | |
if not return_hz_f0: | |
x = (1 + x / 700).log() | |
return x | |
def cents_decoder(self, y, mask=True): | |
B, N, _ = y.size() | |
ci = self.cent_table[None, None, :].expand(B, N, -1) | |
rtn = torch.sum(ci * y, dim=-1, keepdim=True) / torch.sum(y, dim=-1, keepdim=True) # cents: [B,N,1] | |
if mask: | |
confident = torch.max(y, dim=-1, keepdim=True)[0] | |
confident_mask = torch.ones_like(confident) | |
confident_mask[confident <= self.threshold] = float("-INF") | |
rtn = rtn * confident_mask | |
if self.confidence: | |
return rtn, confident | |
else: | |
return rtn | |
def cents_local_decoder(self, y, mask=True): | |
B, N, _ = y.size() | |
ci = self.cent_table[None, None, :].expand(B, N, -1) | |
confident, max_index = torch.max(y, dim=-1, keepdim=True) | |
local_argmax_index = torch.arange(0,9).to(max_index.device) + (max_index - 4) | |
local_argmax_index[local_argmax_index<0] = 0 | |
local_argmax_index[local_argmax_index>=self.n_out] = self.n_out - 1 | |
ci_l = torch.gather(ci,-1,local_argmax_index) | |
y_l = torch.gather(y,-1,local_argmax_index) | |
rtn = torch.sum(ci_l * y_l, dim=-1, keepdim=True) / torch.sum(y_l, dim=-1, keepdim=True) # cents: [B,N,1] | |
if mask: | |
confident_mask = torch.ones_like(confident) | |
confident_mask[confident <= self.threshold] = float("-INF") | |
rtn = rtn * confident_mask | |
if self.confidence: | |
return rtn, confident | |
else: | |
return rtn | |
def cent_to_f0(self, cent): | |
return 10. * 2 ** (cent / 1200.) | |
def f0_to_cent(self, f0): | |
return 1200. * torch.log2(f0 / 10.) | |
def gaussian_blurred_cent(self, cents): # cents: [B,N,1] | |
mask = (cents > 0.1) & (cents < (1200. * np.log2(self.f0_max / 10.))) | |
B, N, _ = cents.size() | |
ci = self.cent_table[None, None, :].expand(B, N, -1) | |
return torch.exp(-torch.square(ci - cents) / 1250) * mask.float() | |
class FCPEInfer: | |
def __init__(self, model_path, device=None, dtype=torch.float32): | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.device = device | |
ckpt = torch.load(model_path, map_location=torch.device(self.device)) | |
self.args = DotDict(ckpt["config"]) | |
self.dtype = dtype | |
model = FCPE( | |
input_channel=self.args.model.input_channel, | |
out_dims=self.args.model.out_dims, | |
n_layers=self.args.model.n_layers, | |
n_chans=self.args.model.n_chans, | |
use_siren=self.args.model.use_siren, | |
use_full=self.args.model.use_full, | |
loss_mse_scale=self.args.loss.loss_mse_scale, | |
loss_l2_regularization=self.args.loss.loss_l2_regularization, | |
loss_l2_regularization_scale=self.args.loss.loss_l2_regularization_scale, | |
loss_grad1_mse=self.args.loss.loss_grad1_mse, | |
loss_grad1_mse_scale=self.args.loss.loss_grad1_mse_scale, | |
f0_max=self.args.model.f0_max, | |
f0_min=self.args.model.f0_min, | |
confidence=self.args.model.confidence, | |
) | |
model.to(self.device).to(self.dtype) | |
model.load_state_dict(ckpt['model']) | |
model.eval() | |
self.model = model | |
self.wav2mel = Wav2Mel(self.args, dtype=self.dtype, device=self.device) | |
def __call__(self, audio, sr, threshold=0.05): | |
self.model.threshold = threshold | |
audio = audio[None,:] | |
mel = self.wav2mel(audio=audio, sample_rate=sr).to(self.dtype) | |
f0 = self.model(mel=mel, infer=True, return_hz_f0=True) | |
return f0 | |
class Wav2Mel: | |
def __init__(self, args, device=None, dtype=torch.float32): | |
# self.args = args | |
self.sampling_rate = args.mel.sampling_rate | |
self.hop_size = args.mel.hop_size | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.device = device | |
self.dtype = dtype | |
self.stft = STFT( | |
args.mel.sampling_rate, | |
args.mel.num_mels, | |
args.mel.n_fft, | |
args.mel.win_size, | |
args.mel.hop_size, | |
args.mel.fmin, | |
args.mel.fmax | |
) | |
self.resample_kernel = {} | |
def extract_nvstft(self, audio, keyshift=0, train=False): | |
mel = self.stft.get_mel(audio, keyshift=keyshift, train=train).transpose(1, 2) # B, n_frames, bins | |
return mel | |
def extract_mel(self, audio, sample_rate, keyshift=0, train=False): | |
audio = audio.to(self.dtype).to(self.device) | |
# resample | |
if sample_rate == self.sampling_rate: | |
audio_res = audio | |
else: | |
key_str = str(sample_rate) | |
if key_str not in self.resample_kernel: | |
self.resample_kernel[key_str] = Resample(sample_rate, self.sampling_rate, lowpass_filter_width=128) | |
self.resample_kernel[key_str] = self.resample_kernel[key_str].to(self.dtype).to(self.device) | |
audio_res = self.resample_kernel[key_str](audio) | |
# extract | |
mel = self.extract_nvstft(audio_res, keyshift=keyshift, train=train) # B, n_frames, bins | |
n_frames = int(audio.shape[1] // self.hop_size) + 1 | |
if n_frames > int(mel.shape[1]): | |
mel = torch.cat((mel, mel[:, -1:, :]), 1) | |
if n_frames < int(mel.shape[1]): | |
mel = mel[:, :n_frames, :] | |
return mel | |
def __call__(self, audio, sample_rate, keyshift=0, train=False): | |
return self.extract_mel(audio, sample_rate, keyshift=keyshift, train=train) | |
class DotDict(dict): | |
def __getattr__(*args): | |
val = dict.get(*args) | |
return DotDict(val) if type(val) is dict else val | |
__setattr__ = dict.__setitem__ | |
__delattr__ = dict.__delitem__ | |