Spaces:
Runtime error
Runtime error
File size: 15,197 Bytes
7ae68fe 6c26e0d 7ae68fe 6c26e0d 7ae68fe 6c26e0d 7ae68fe 6c26e0d 7ae68fe 6c26e0d 7ae68fe 6c26e0d 7ae68fe 6c26e0d 7ae68fe 29cd0de 7ae68fe 29cd0de 7ae68fe 6c26e0d 7ae68fe 411b6f0 7ae68fe 29cd0de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# --------------------------------------------------------
# InstructDiffusion
# Based on instruct-pix2pix (https://github.com/timothybrooks/instruct-pix2pix)
# Modified by Tiankai Hang (tkhang@seu.edu.cn)
# --------------------------------------------------------
import os
import sys
import re
import math
import numpy as np
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import OmegaConf
from torch import autocast
import einops
from einops import rearrange
import gradio as gr
import k_diffusion as K
import requests
from functools import partial
from copy import deepcopy
from PIL import Image, ImageOps
import click
sys.path.append("./stable_diffusion")
from stable_diffusion.ldm.util import instantiate_from_config
def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
model = instantiate_from_config(config.model)
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if 'state_dict' in pl_sd:
pl_sd = pl_sd['state_dict']
m, u = model.load_state_dict(pl_sd, strict=False)
print(m, u)
return model
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def get_header():
content = """
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div style="
display: inline-flex;
gap: 0.8rem;
font-size: 1.75rem;
justify-content: center;
margin-bottom: 10px;
">
<h1 style="font-weight: 900; align-items: center; margin-bottom: 7px; margin-top: 20px;">
InstructDiffusion 🎨
</h1>
</div>
<div>
<p style="align-items: center; margin-bottom: 7px;">
InstructDiffusion, upload a source image and write the instruction to conduct keypoint detection, referring segmentation, and image editing.
</p>
<p style="align-items: center; margin-bottom: 7px;">
Paper is available in <a style="text-decoration: underline;" href="https://gengzigang.github.io/instructdiffusion.github.io/">Arxiv</a>. If you like this demo, please help to ⭐ the <a style="text-decoration: underline;" href="https://github.com/cientgu/InstructDiffusion">Github Repo</a> 😊.
</p>
</div>
</div>
"""
return content
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale):
cfg_z = einops.repeat(z, "1 ... -> n ...", n=3)
cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3)
cfg_cond = {
"c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], cond["c_crossattn"][0]])],
"c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])],
}
out_cond, out_img_cond, out_txt_cond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3)
return 0.5 * (out_img_cond + out_txt_cond) + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_cond - out_txt_cond)
def predict(
model, model_wrap,
model_wrap_cfg,
null_token, resolution,
input_img, edit, seed, steps, cfg_text, cfg_image,
stochastic_steps=0, sampler="euler", additional={}):
# set seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
try:
torch.cuda.manual_seed(seed)
torch.cuda.empty_cache()
except:
pass
if isinstance(input_img, str):
if input_img.startswith("http"):
input_image = Image.open(requests.get(input_img, stream=True).raw).convert("RGB")
else:
input_image = Image.open(input_img).convert("RGB")
width, height = input_image.size
factor = resolution / max(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
if hasattr(Image, "Resampling"):
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
else:
input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS)
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
if torch.cuda.is_available():
input_image = rearrange(input_image, "h w c -> 1 c h w").cuda()
else:
input_image = rearrange(input_image, "h w c -> 1 c h w")
# if PIL Image
elif isinstance(input_img, Image.Image):
input_image = input_img
width, height = input_image.size
factor = resolution / max(width, height)
# factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
if hasattr(Image, "Resampling"):
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
else:
input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS)
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
if torch.cuda.is_available():
input_image = rearrange(input_image, "h w c -> 1 c h w").cuda()
else:
input_image = rearrange(input_image, "h w c -> 1 c h w")
elif isinstance(input_img, dict):
input_image = input_img["image"].convert("RGB")
width, height = input_image.size
factor = resolution / max(width, height)
width = int((width * factor) // 64) * 64
height = int((height * factor) // 64) * 64
if hasattr(Image, "Resampling"):
input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS)
else:
input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS)
input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1
if torch.cuda.is_available():
input_image = rearrange(input_image, "h w c -> 1 c h w").cuda()
else:
input_image = rearrange(input_image, "h w c -> 1 c h w")
assert input_image is not None
# print input image size
print(input_image.shape, factor, width, height)
# with torch.no_grad(), autocast("cuda"):
with torch.no_grad():
cond = {}
cond["c_crossattn"] = [model.get_learned_conditioning([edit])]
cond["c_concat"] = [model.encode_first_stage(input_image).mode()]
uncond = {}
if "txt_embed" in additional:
if torch.cuda.is_available():
uncond["c_crossattn"] = [additional["txt_embed"].cuda().unsqueeze(0)]
else:
uncond["c_crossattn"] = [additional["txt_embed"].unsqueeze(0)]
else:
uncond["c_crossattn"] = [null_token]
if "img_embed" in additional:
# uncond["c_concat"] = [additional["img_embed"].cuda()]
# resize to cond["c_concat"][0]
if torch.cuda.is_available():
uncond["c_concat"] = [additional["img_embed"].cuda()]
else:
uncond["c_concat"] = [additional["img_embed"]]
uncond["c_concat"][0] = F.interpolate(uncond["c_concat"][0], size=cond["c_concat"][0].shape[-2:], mode="bilinear", align_corners=False)
else:
uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])]
sigmas = model_wrap.get_sigmas(steps)
extra_args = {
"cond": cond,
"uncond": uncond,
"text_cfg_scale": cfg_text,
"image_cfg_scale": cfg_image,
}
if stochastic_steps <= 0:
z = torch.randn_like(cond["c_concat"][0]) * sigmas[0]
if sampler == "euler":
z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args)
elif sampler == "heun":
z = K.sampling.sample_heun(model_wrap_cfg, z, sigmas, extra_args=extra_args)
else:
z = torch.randn_like(cond["c_concat"][0]) * sigmas[stochastic_steps] + cond["c_concat"][0]
z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas[stochastic_steps:], extra_args=extra_args)
x = model.decode_first_stage(z)
x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0)
x = 255.0 * rearrange(x, "1 c h w -> h w c")
edited_image = Image.fromarray(x.type(torch.uint8).cpu().numpy())
# input_image to PIL
input_image = torch.clamp((input_image + 1.0) / 2.0, min=0.0, max=1.0)
input_image = 255.0 * rearrange(input_image, "1 c h w -> h w c")
input_image = Image.fromarray(input_image.type(torch.uint8).cpu().numpy())
return edited_image # , gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
@click.command()
@click.option("--ckpt", type=str, default="checkpoints/v1-5-pruned-emaonly-adaption-task-humanalign.ckpt")
@click.option("--auto-download", type=bool, default=True)
def main(ckpt="checkpoints/v1-5-pruned-emaonly-adaption-task-humanalign.ckpt", auto_download=True):
css = '''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
'''
if auto_download:
os.system("bash scripts/download_instructdiffusion.sh")
config = OmegaConf.load("configs/instruct_diffusion.yaml")
# ckpt = "checkpoints/v1-5-pruned-emaonly-adaption-task-humanalign.ckpt"
if not os.path.exists(ckpt):
raise ValueError(f"Checkpoint {ckpt} does not exist")
vae_ckpt = None
model = load_model_from_config(config, ckpt, vae_ckpt)
if torch.cuda.is_available():
model.eval().cuda()
else:
model.eval()
model_wrap = K.external.CompVisDenoiser(model)
model_wrap_cfg = CFGDenoiser(model_wrap)
null_token = model.get_learned_conditioning([""])
image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
gr.HTML(get_header())
with gr.Group():
with gr.Box():
with gr.Row():
with gr.Column():
image = gr.Image(source='upload', tool=None, elem_id="image_upload", type="pil", label="Source Image")
instruction = gr.Textbox(lines=3, placeholder="Enter text to edit", label="Text")
cfg_text = gr.Slider(label="Guidance scale (TXT)", value=7.0, maximum=15,interactive=True)
cfg_image = gr.Slider(label="Guidance scale (IMG)", value=1.25, maximum=15,interactive=True)
steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=75, step=1,interactive=True)
resolution = gr.Slider(label="Resolution (long side)", value=512, minimum=256, maximum=768, step=64, interactive=True)
seed = gr.Slider(0, 10000, label='Seed', value=0, step=1)
with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
btn = gr.Button(
"Edit!",
margin=False,
rounded=(False, True, True, False),
full_width=True,
)
# output
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img", height=400, show_download_button=True)
partial_predict = partial(
predict,
model, model_wrap,
model_wrap_cfg,
null_token, # RESOLUTION
)
btn.click(
fn=partial_predict,
inputs=[
resolution, image, instruction, seed, steps, cfg_text, cfg_image
],
outputs=[image_out])
gr.HTML(
"""
<div class="footer">
<p>
InstructDiffusion Demo
</p>
</div>
<div class="acknowledgments">
<p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
"""
)
# image_blocks.launch(share=True, max_threads=1).queue()
image_blocks.launch()
if __name__ == "__main__":
main()
|