# -------------------------------------------------------- # InstructDiffusion # Based on instruct-pix2pix (https://github.com/timothybrooks/instruct-pix2pix) # Modified by Tiankai Hang (tkhang@seu.edu.cn) # -------------------------------------------------------- import os import sys import re import math import numpy as np import random import torch import torch.nn as nn import torch.nn.functional as F from omegaconf import OmegaConf from torch import autocast import einops from einops import rearrange import gradio as gr import k_diffusion as K import requests from functools import partial from copy import deepcopy from PIL import Image, ImageOps import click sys.path.append("./stable_diffusion") from stable_diffusion.ldm.util import instantiate_from_config def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False): model = instantiate_from_config(config.model) print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if 'state_dict' in pl_sd: pl_sd = pl_sd['state_dict'] m, u = model.load_state_dict(pl_sd, strict=False) print(m, u) return model def read_content(file_path: str) -> str: """read the content of target file """ with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return content def get_header(): content = """

InstructDiffusion 🎨

InstructDiffusion, upload a source image and write the instruction to conduct keypoint detection, referring segmentation, and image editing.

Paper is available in Arxiv. If you like this demo, please help to ⭐ the Github Repo 😊.

""" return content class CFGDenoiser(nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, z, sigma, cond, uncond, text_cfg_scale, image_cfg_scale): cfg_z = einops.repeat(z, "1 ... -> n ...", n=3) cfg_sigma = einops.repeat(sigma, "1 ... -> n ...", n=3) cfg_cond = { "c_crossattn": [torch.cat([cond["c_crossattn"][0], uncond["c_crossattn"][0], cond["c_crossattn"][0]])], "c_concat": [torch.cat([cond["c_concat"][0], cond["c_concat"][0], uncond["c_concat"][0]])], } out_cond, out_img_cond, out_txt_cond = self.inner_model(cfg_z, cfg_sigma, cond=cfg_cond).chunk(3) return 0.5 * (out_img_cond + out_txt_cond) + text_cfg_scale * (out_cond - out_img_cond) + image_cfg_scale * (out_cond - out_txt_cond) def predict( model, model_wrap, model_wrap_cfg, null_token, resolution, input_img, edit, seed, steps, cfg_text, cfg_image, stochastic_steps=0, sampler="euler", additional={}): # set seed random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) try: torch.cuda.manual_seed(seed) torch.cuda.empty_cache() except: pass if isinstance(input_img, str): if input_img.startswith("http"): input_image = Image.open(requests.get(input_img, stream=True).raw).convert("RGB") else: input_image = Image.open(input_img).convert("RGB") width, height = input_image.size factor = resolution / max(width, height) width = int((width * factor) // 64) * 64 height = int((height * factor) // 64) * 64 if hasattr(Image, "Resampling"): input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS) else: input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS) input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1 if torch.cuda.is_available(): input_image = rearrange(input_image, "h w c -> 1 c h w").cuda() else: input_image = rearrange(input_image, "h w c -> 1 c h w") # if PIL Image elif isinstance(input_img, Image.Image): input_image = input_img width, height = input_image.size factor = resolution / max(width, height) # factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height) width = int((width * factor) // 64) * 64 height = int((height * factor) // 64) * 64 if hasattr(Image, "Resampling"): input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS) else: input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS) input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1 if torch.cuda.is_available(): input_image = rearrange(input_image, "h w c -> 1 c h w").cuda() else: input_image = rearrange(input_image, "h w c -> 1 c h w") elif isinstance(input_img, dict): input_image = input_img["image"].convert("RGB") width, height = input_image.size factor = resolution / max(width, height) width = int((width * factor) // 64) * 64 height = int((height * factor) // 64) * 64 if hasattr(Image, "Resampling"): input_image = ImageOps.fit(input_image, (width, height), method=Image.Resampling.LANCZOS) else: input_image = ImageOps.fit(input_image, (width, height), method=Image.LANCZOS) input_image = 2 * torch.tensor(np.array(input_image)).float() / 255 - 1 if torch.cuda.is_available(): input_image = rearrange(input_image, "h w c -> 1 c h w").cuda() else: input_image = rearrange(input_image, "h w c -> 1 c h w") assert input_image is not None # print input image size print(input_image.shape, factor, width, height) # with torch.no_grad(), autocast("cuda"): with torch.no_grad(): cond = {} cond["c_crossattn"] = [model.get_learned_conditioning([edit])] cond["c_concat"] = [model.encode_first_stage(input_image).mode()] uncond = {} if "txt_embed" in additional: if torch.cuda.is_available(): uncond["c_crossattn"] = [additional["txt_embed"].cuda().unsqueeze(0)] else: uncond["c_crossattn"] = [additional["txt_embed"].unsqueeze(0)] else: uncond["c_crossattn"] = [null_token] if "img_embed" in additional: # uncond["c_concat"] = [additional["img_embed"].cuda()] # resize to cond["c_concat"][0] if torch.cuda.is_available(): uncond["c_concat"] = [additional["img_embed"].cuda()] else: uncond["c_concat"] = [additional["img_embed"]] uncond["c_concat"][0] = F.interpolate(uncond["c_concat"][0], size=cond["c_concat"][0].shape[-2:], mode="bilinear", align_corners=False) else: uncond["c_concat"] = [torch.zeros_like(cond["c_concat"][0])] sigmas = model_wrap.get_sigmas(steps) extra_args = { "cond": cond, "uncond": uncond, "text_cfg_scale": cfg_text, "image_cfg_scale": cfg_image, } if stochastic_steps <= 0: z = torch.randn_like(cond["c_concat"][0]) * sigmas[0] if sampler == "euler": z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas, extra_args=extra_args) elif sampler == "heun": z = K.sampling.sample_heun(model_wrap_cfg, z, sigmas, extra_args=extra_args) else: z = torch.randn_like(cond["c_concat"][0]) * sigmas[stochastic_steps] + cond["c_concat"][0] z = K.sampling.sample_euler_ancestral(model_wrap_cfg, z, sigmas[stochastic_steps:], extra_args=extra_args) x = model.decode_first_stage(z) x = torch.clamp((x + 1.0) / 2.0, min=0.0, max=1.0) x = 255.0 * rearrange(x, "1 c h w -> h w c") edited_image = Image.fromarray(x.type(torch.uint8).cpu().numpy()) # input_image to PIL input_image = torch.clamp((input_image + 1.0) / 2.0, min=0.0, max=1.0) input_image = 255.0 * rearrange(input_image, "1 c h w -> h w c") input_image = Image.fromarray(input_image.type(torch.uint8).cpu().numpy()) return edited_image # , gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) @click.command() @click.option("--ckpt", type=str, default="checkpoints/v1-5-pruned-emaonly-adaption-task-humanalign.ckpt") @click.option("--auto-download", type=bool, default=True) def main(ckpt="checkpoints/v1-5-pruned-emaonly-adaption-task-humanalign.ckpt", auto_download=True): css = ''' .container {max-width: 1150px;margin: auto;padding-top: 1.5rem} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } ''' if auto_download: os.system("bash scripts/download_instructdiffusion.sh") config = OmegaConf.load("configs/instruct_diffusion.yaml") # ckpt = "checkpoints/v1-5-pruned-emaonly-adaption-task-humanalign.ckpt" if not os.path.exists(ckpt): raise ValueError(f"Checkpoint {ckpt} does not exist") vae_ckpt = None model = load_model_from_config(config, ckpt, vae_ckpt) if torch.cuda.is_available(): model.eval().cuda() else: model.eval() model_wrap = K.external.CompVisDenoiser(model) model_wrap_cfg = CFGDenoiser(model_wrap) null_token = model.get_learned_conditioning([""]) image_blocks = gr.Blocks(css=css) with image_blocks as demo: gr.HTML(get_header()) with gr.Group(): with gr.Box(): with gr.Row(): with gr.Column(): image = gr.Image(source='upload', tool=None, elem_id="image_upload", type="pil", label="Source Image") instruction = gr.Textbox(lines=3, placeholder="Enter text to edit", label="Text") cfg_text = gr.Slider(label="Guidance scale (TXT)", value=7.0, maximum=15,interactive=True) cfg_image = gr.Slider(label="Guidance scale (IMG)", value=1.25, maximum=15,interactive=True) steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=75, step=1,interactive=True) resolution = gr.Slider(label="Resolution (long side)", value=512, minimum=256, maximum=768, step=64, interactive=True) seed = gr.Slider(0, 10000, label='Seed', value=0, step=1) with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True): btn = gr.Button( "Edit!", margin=False, rounded=(False, True, True, False), full_width=True, ) # output with gr.Column(): image_out = gr.Image(label="Output", elem_id="output-img", height=400, show_download_button=True) partial_predict = partial( predict, model, model_wrap, model_wrap_cfg, null_token, # RESOLUTION ) btn.click( fn=partial_predict, inputs=[ resolution, image, instruction, seed, steps, cfg_text, cfg_image ], outputs=[image_out]) gr.HTML( """

LICENSE

The model is licensed with a CreativeML Open RAIL-M license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please read the license

""" ) # image_blocks.launch(share=True, max_threads=1).queue() image_blocks.launch() if __name__ == "__main__": main()